Selective reduction of one mode of M-channel gating by muscarine in sympathetic neurons
M-current is widespread in the nervous system. It stabilizes cell excitability, and its suppression by muscarinic receptor activation underlies slow synaptic transmission in sympathetic neurons. Suppression of M-current was one of the first examples of neuromodulation of a potassium current, but the...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 1993-07, Vol.11 (1), p.77-84 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | M-current is widespread in the nervous system. It stabilizes cell excitability, and its suppression by muscarinic receptor activation underlies slow synaptic transmission in sympathetic neurons. Suppression of M-current was one of the first examples of neuromodulation of a potassium current, but the mechanism is not understood. Single-channel recording was used to study this issue. An M-channel with two conductance states, which exhibited appropriate voltage-dependent kinetics with two modes of gating, has been resolved. Mode 1 comprises short open time, low open probability events, and mode 2 openings represent long open time, high open probability behavior. Muscarine decreased M-channel activity by selectively reducing mode 2 M-channel gating through a diffusible second messenger. It is suggested that control of modal gating may be a widespread mechanism for neuromodulation. |
---|---|
ISSN: | 0896-6273 1097-4199 |
DOI: | 10.1016/0896-6273(93)90272-S |