Longer-term growth prediction using GAUSS

In several areas of biomedicine, one needs to predict future measurements for a growing individual on the basis of longitudinal data. Here we consider the problem of estimating the values of a given measurement for a particular individual at T-T ∗ points in time, given T ∗ observations on that indiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 1993-03, Vol.23 (2), p.149-154
Hauptverfasser: Schneiderman, Emet D., Willis, Stephen M., Kowalski, Charles J., Ten Have, Thomas R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In several areas of biomedicine, one needs to predict future measurements for a growing individual on the basis of longitudinal data. Here we consider the problem of estimating the values of a given measurement for a particular individual at T-T ∗ points in time, given T ∗ observations on that individual, and all T values for a sample of N “similar” individuals. This extends our previous discussion [Schneiderman et al., Comput. Biol. Med. 22, 181–188 (1992)], which was limited to the case T ∗ = T − 1 , to longer-term predictions. We again make a user-friendly GAUSS program available to perform the associated computations. Examples illustrating the use of the program and the accuracy of the predictions it provides are included.
ISSN:0010-4825
1879-0534
DOI:10.1016/0010-4825(93)90146-R