Nuclease footprinting of human immunodeficiency virus reverse transcriptase/tRNA(Lys-3) complexes

Nuclease footprinting has been used to probe features of binary complexes of type 1 human immunodeficiency virus reverse transcriptase (HIV-1 RT) with both natural and synthetic preparations of its cognate replication primer, tRNA(Lys-3). In addition to heterodimeric RT (p66/p51), ribonucleoprotein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1993-06, Vol.268 (18), p.13617-13624
Hauptverfasser: Wöhrl, B M, Ehresmann, B, Keith, G, Le Grice, S F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nuclease footprinting has been used to probe features of binary complexes of type 1 human immunodeficiency virus reverse transcriptase (HIV-1 RT) with both natural and synthetic preparations of its cognate replication primer, tRNA(Lys-3). In addition to heterodimeric RT (p66/p51), ribonucleoprotein complexes containing either the p66 or p51 subunit were analyzed. Footprinting experiments employed both structure- and sequence-specific nucleases. Our results indicate a similar mode of interaction for the three RT preparations tested, suggesting contact with each loop of the tRNA primer (D, anticodon, and T psi C), as well as minor perturbation of the anticodon stem. Although there is little evidence for extensive disruption of the 3'-acceptor stem. RNase A footprinting data with natural and synthetic tRNA suggests that potential base pairing between the T psi C and D loops is disrupted in the presence of RT.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(19)38693-4