Design and performance of capping layers for extreme-ultraviolet multilayer mirrors
Multilayer lifetime has emerged as one of the major issues for the commercialization of extreme-ultraviolet lithography (EUVL). We describe the performance of an oxidation-resistant capping layer of Ru atop multilayers that results in a reflectivity above 69% at 13.2 nm, which is suitable for EUVL p...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2003-10, Vol.42 (28), p.5750-5758 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multilayer lifetime has emerged as one of the major issues for the commercialization of extreme-ultraviolet lithography (EUVL). We describe the performance of an oxidation-resistant capping layer of Ru atop multilayers that results in a reflectivity above 69% at 13.2 nm, which is suitable for EUVL projection optics and has been tested with accelerated electron-beam and extreme-ultraviolet (EUV) light in a water-vapor environment. Based on accelerated exposure results, we calculated multilayer lifetimes for all reflective mirrors in a typical commercial EUVL tool and concluded that Ru-capped multilayers have approximately 40x longer lifetimes than Si-capped multilayers, which translates to 3 months to many years, depending on the mirror dose. |
---|---|
ISSN: | 1559-128X 0003-6935 1539-4522 |
DOI: | 10.1364/ao.42.005750 |