Response to motexafin gadolinium and ionizing radiation of experimental rat prostate and lung tumors

To investigate the responses of two experimental rat tumors to single and fractionated X-ray doses whether or not combined with Motexafin gadolinium (MGd), and the distribution of MGd in R3327-MATLyLu (MLL) tumors using MRI. L44 lung tumor in BN rats and MLL prostate tumor in Copenhagen rats were gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of radiation oncology, biology, physics biology, physics, 2003-11, Vol.57 (3), p.787-793
Hauptverfasser: Dehnad, Homan, Kal, Henk B, Stam, Tanja, Gademan, Iris S, van Moorselaar, R.Jeroen A, van der Sanden, Boudewijn P.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To investigate the responses of two experimental rat tumors to single and fractionated X-ray doses whether or not combined with Motexafin gadolinium (MGd), and the distribution of MGd in R3327-MATLyLu (MLL) tumors using MRI. L44 lung tumor in BN rats and MLL prostate tumor in Copenhagen rats were grown subcutaneously. MGd at concentrations of 8.7 to 25.1 μmol/kg was administered 2 h before or just before treatments with single and fractionated X-ray doses. Tumor volume growth delay was the endpoint used. The two-dimensional distribution of the MGd concentration in time was analyzed simultaneously in slices through the center of MLL tumors using MRI. Directly after the MRI experiments, tumor sections were stained for cytoplasm, nuclei, and microvessel endothelium. MGd at different concentrations administered a few minutes or 2 h before X-ray doses produced no radiation enhancement in the two tumor models. The MGd concentration as determined by MRI was maximal 5 min after injection and decreased slowly thereafter. In a representative section at the center of the MLL tumor, the microvessel density is nearly homogeneous and correlates with a nearly homogeneous MGd distribution. Hardly any MGd is taken up in underlying muscle tissue. No radiosensitization was observed for the different irradiation regimens. The distribution of MGd is nearly homogeneous in the MLL tumor and hardly any MGd is taken up in underlying muscles. Our negative results on radiosensitivity in our two tumor models raise questions about the efficacy of MGd as a general radiosensitizing agent.
ISSN:0360-3016
1879-355X
DOI:10.1016/S0360-3016(03)00661-8