Effects of a nonlinear perturbation on dynamical tunneling in cold atoms
We perform a numerical analysis of the effects of a nonlinear perturbation on the quantum dynamics of two models describing noninteracting cold atoms in a standing wave of light with a periodical modulated amplitude A(t). One model is the driven pendulum, recently considered by D.A. Steck, W.H. Oska...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2003-09, Vol.68 (3 Pt 2), p.036221-036221, Article 036221 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We perform a numerical analysis of the effects of a nonlinear perturbation on the quantum dynamics of two models describing noninteracting cold atoms in a standing wave of light with a periodical modulated amplitude A(t). One model is the driven pendulum, recently considered by D.A. Steck, W.H. Oskay, and M.G. Raizen [Science 293, 274 (2001)], and the other is a variant of the well-known kicked rotator model. In absence of the nonlinear perturbation, the system is invariant under some discrete symmetries and quantum dynamical tunneling between symmetric classical islands is found. The presence of nonlinearity destroys tunneling, breaking the symmetries of the system. Finally, further consequences of nonlinearity in the kicked rotator case are considered. |
---|---|
ISSN: | 1539-3755 1063-651X 1095-3787 |
DOI: | 10.1103/PhysRevE.68.036221 |