Calcium bursts induced by nanosecond electric pulses

We report here real-time imaging of calcium bursts in human lymphocytes exposed to nanosecond, megavolt-per-meter pulsed electric fields. Ultra-short (less than 30 ns), high-field (greater than 1 MV/m), electric pulses induce increases in cytosolic calcium concentration and translocation of phosphat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2003-10, Vol.310 (2), p.286-295
Hauptverfasser: Vernier, P.Thomas, Sun, Yinghua, Marcu, Laura, Salemi, Sarah, Craft, Cheryl M, Gundersen, Martin A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report here real-time imaging of calcium bursts in human lymphocytes exposed to nanosecond, megavolt-per-meter pulsed electric fields. Ultra-short (less than 30 ns), high-field (greater than 1 MV/m), electric pulses induce increases in cytosolic calcium concentration and translocation of phosphatidylserine (PS) to the outer layer of the plasma membrane in Jurkat T lymphoblasts. Pulse-induced calcium bursts occur within milliseconds and PS externalization within minutes. Caspase activation and other indicators of apoptosis follow these initial symptoms of nanosecond pulse exposure. Pulse-induced PS translocation is observed even in the presence of caspase inhibitors. Ultra-short, high-field, electroperturbative pulse effects differ substantially from those associated with electroporation, where pulses of a few tens of kilovolts-per-meter lasting a few tens of microseconds open pores in the cytoplasmic membrane. Nanosecond pulsed electric fields, because their duration is less than the plasma membrane charging time, develop voltages across intracellular structures without porating the cell.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2003.08.140