Individual models for virtual bone drilling in mastoid surgery

Segmented training cases for virtual simulation of bone-drilling interventions in middle ear surgery have proven to be helpful in learning about surgical anatomy of the temporal bone. The anatomy of the mastoid shows a high degree of variability, however, and the aim of this study was to evaluate wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer aided surgery (New York, N.Y.) N.Y.), 2009, Vol.14 (1-3), p.21-27
Hauptverfasser: Tolsdorff, B., Petersik, A., Pflesser, B., Pommert, A., Tiede, U., Leuwer, R., Höhne, K.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Segmented training cases for virtual simulation of bone-drilling interventions in middle ear surgery have proven to be helpful in learning about surgical anatomy of the temporal bone. The anatomy of the mastoid shows a high degree of variability, however, and the aim of this study was to evaluate whether individual virtual models could be created within an affordable timeframe, and to what extend they reflected natural individual anatomy during virtual mastoid surgery. Automatic segmentation schemes were used, and these reduced the time required to create individual models on the basis of DICOM CT scans to less than 5 minutes. Models based on CT data with a slice distance of 0.4 mm or better were found to provide excellent handling, an acceptable depiction of mastoidal organs, and a helpful impression of the individual surgical situation. Although landmarks are still more easily detected in real mastoids, virtual drilling of individual models makes the 3D estimation of specific anatomy more effective than estimations based on interpretation of CT scans alone.
ISSN:1092-9088
1097-0150
DOI:10.3109/10929080903040540