Regulation of fibrinogen production by microRNAs
Elevated levels of fibrinogen are associated with increased risk of cardiovascular disease, whereas low fibrinogen can lead to a bleeding disorder. We investigated whether microRNAs (miRNAs), known to act as post-transcriptional regulators of gene expression, regulate fibrinogen production. Using tr...
Gespeichert in:
Veröffentlicht in: | Blood 2010-10, Vol.116 (14), p.2608-2615 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Elevated levels of fibrinogen are associated with increased risk of cardiovascular disease, whereas low fibrinogen can lead to a bleeding disorder. We investigated whether microRNAs (miRNAs), known to act as post-transcriptional regulators of gene expression, regulate fibrinogen production. Using transfection of a library of 470 annotated human miRNA precursor molecules in HuH7 hepatoma cells and quantitative measurements of fibrinogen production, we identified 23 miRNAs with down-regulating (up to 64% decrease) and 4 with up-regulating effects (up to 129% increase) on fibrinogen production. Among the down-regulating miRNAs, we investigated the mechanism of action of 3 hsa-miR-29 family members and hsa-miR-409-3p. Overexpression of hsa-miR-29 members led to decreased steady-state levels of all fibrinogen gene (FGA, FGB, and FGG) transcripts in HuH7 cells. Luciferase reporter gene assays demonstrated that this was independent of miRNA-fibrinogen 3′-untranslated region interactions. In contrast, overexpression of hsa-miR-409-3p specifically lowered fibrinogen Bβ mRNA levels, and this effect was dependent on a target site in the fibrinogen Bβ mRNA 3′-untranslated region. This study adds to the known mechanisms that control fibrinogen production, points toward a potential cause of variable circulating fibrinogen levels, and demonstrates that a screening approach can identify miRNAs that regulate clinically important proteins. |
---|---|
ISSN: | 0006-4971 1528-0020 1528-0020 |
DOI: | 10.1182/blood-2010-02-268011 |