Influence of glucagon-like peptide-1 on β cell responsiveness
The postulated incretin factor glucagon-like peptide-1 (GLP-1) causes a glucose-dependent increase in insulin secretion from perifused rat islets. In the presence of 6 mM glucose the response to 10 nM GLP-1 is characterized by a large initial spike of secretion, followed by a brief, slowly rising ph...
Gespeichert in:
Veröffentlicht in: | Regulatory peptides 1993-04, Vol.44 (3), p.277-283 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The postulated incretin factor glucagon-like peptide-1 (GLP-1) causes a glucose-dependent increase in insulin secretion from perifused rat islets. In the presence of 6 mM glucose the response to 10 nM GLP-1 is characterized by a large initial spike of secretion, followed by a brief, slowly rising phase. However, after 30–40 min of stimulation, this phase subsides to prestimulatory secretory rates. Raising the glucose level to 8 mM, however, amplifies and sustains the stimulatory effect of 10 nM GLP-1. The response to GLP-1 (10 nM) in the presence of 8 mM glucose is abolished by the metabolic inhibitor mannoheptulose (15 mM), and reduced by the calcium channel antagonist nitrendipine (5 μM), or the protein kinase C inhibitor of staurosporine (20 nM). A significant synergistic effect of GLP-1 (10 nM) and 10 μM carbachol, a cholinergic agonist, on insulin secretion was observed in the presence of 6 mM glucose. In the presence of either 6 or 8 mM glucose, GLP-1 (10 nM) has no significant effect on glucose usage or on inositol phosphate generation in [
3H]inositol prelabeled islets. The results support the concept that GLP-1 may function as an important physiologic incretin factor, particularly when accompanied by agonists that activate phosphoinositide hydrolysis. |
---|---|
ISSN: | 0167-0115 1873-1686 |
DOI: | 10.1016/0167-0115(93)90137-W |