A new subunit of the cyclic nucleotide-gated cation channel in retinal rods
Retinal rods respond to light with a membrane hyperpolarization produced by a G-protein-mediated signalling cascade that leads to cyclic GMP hydrolysis and the consequent closure of a cGMP-gated channel that is open in darkness. A protein that forms this channel has recently been purified from bovin...
Gespeichert in:
Veröffentlicht in: | Nature (London) 1993-04, Vol.362 (6422), p.764-767 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Retinal rods respond to light with a membrane hyperpolarization produced by a G-protein-mediated signalling cascade that leads to cyclic GMP hydrolysis and the consequent closure of a cGMP-gated channel that is open in darkness. A protein that forms this channel has recently been purified from bovine retina and molecularly cloned, suggesting that the native cGMP-gated channel might be a homo-oligomer. Here we report the cloning of another protein from human retina which has only about 30% overall identity to the rod channel subunit. This protein, immunocytochemically localized to rod outer segments, does not form functional channels by itself. However, when co-expressed with the cloned human rod channel protein, it introduces rapid flickers to the channel openings that are characteristic of the native channel. The hetero-oligomeric channel is also highly sensitive to the blocker L-cis-diltiazem, like the native channel. This new protein thus seems to be another subunit of the native rod channel. The hetero-oligomeric nature of the rod channel means that it is no exception to a common motif shared by other ligand-gated channels. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/362764a0 |