Yeast cells can enter a quiescent state through G1, S, G2, or M phase of the cell cycle

We have examined the ability of the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae to enter a quiescent state through G1, S, G2, or M phase of the cell cycle. We monitored entry to a quiescent state by measuring two well known properties of quiescent cells, i.e., long-term viability a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 1993-04, Vol.53 (8), p.1867-1870
Hauptverfasser: WEN WEI, NURSE, P, BROEK, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have examined the ability of the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae to enter a quiescent state through G1, S, G2, or M phase of the cell cycle. We monitored entry to a quiescent state by measuring two well known properties of quiescent cells, i.e., long-term viability and a dramatic increase in resistance to thermal heat shock relative to cycling cells. For this purpose, we made use of yeast cell division cycle (cdc) mutants with which we could arrest most of the cells in culture at specific points in the cell cycle. We find that these eukaryotes can enter a reversible quiescent state at any of the points in the cell cycle we examined if the cells are exposed to starvation conditions (starvation normally signals cells to leave the cell cycle). These findings indicate that mechanisms involved in entry to and exit from a quiescent state can operate not only in G1 phase (leading to G0 arrested cells) but can also operate in S, G2, and M phases of the cell cycle. These findings may be important for clinical oncology in cases where tumor cells escape the cytotoxic effects of chemotherapeutic agents. It may be that escape from the effect of these drugs is due to tumor cells entering quiescent states at points in the cell cycle other than G1 phase. Perhaps different chemotherapeutic strategies may be required to kill tumor cells reentering the cell cycle from other than G1.
ISSN:0008-5472
1538-7445