A specific binding protein for 1 alpha,25-dihydroxyvitamin D in the chick embryo chorioallantoic membrane

A 3.7 S binding protein for the steroid hormone and vitamin D metabolite 1 alpha-25-dihydroxyvitamin D (1,25-(OH)2-D) was observed in high salt cytosol extracts of chick embryo chorioallantoic membrane. The binding protein was characterized after partial purification of cytosol extracts by ammonium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1981-06, Vol.256 (11), p.5545-5549
Hauptverfasser: W A Coty, C L McConkey, Jr, T A Brown
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A 3.7 S binding protein for the steroid hormone and vitamin D metabolite 1 alpha-25-dihydroxyvitamin D (1,25-(OH)2-D) was observed in high salt cytosol extracts of chick embryo chorioallantoic membrane. The binding protein was characterized after partial purification of cytosol extracts by ammonium sulfate fractionation. The binding of 1,25-(OH)2-D was saturable, had a high affinity (Kd = 0.16 nM), and was specific for hormonally active vitamin D metabolites. Analysis of the displacement of [3H]1,25-(OH)2-D by unlabeled analogues showed the affinities of vitamin D metabolites to be in the order of 1,25-(OH)2-D = 1,24R,25-(OH)3-D much greater than 25-OH-D = 1-OH-D greater than 24R,25-(OH)2-D. Hormone binding was sensitive to pretreatment with sulfhydryl-blocking reagents. The chorioallantoic membrane 1,25-(OH)2-D-binding protein associated with the chromatin fraction after homogenization of membranes in low salt buffer, and bound to DNA-cellulose columns, eluting as a single peak at 0.215 M KCl. These findings support identification of this 1,25-(OH)2-D-binding protein as a steroid hormone receptor, with properties indistinguishable from 1,25-(OH)2-D receptors in other chick tissues. The chorioallantoic membrane functions in the last third of embryonic development to reabsorb calcium from the eff shell for deposition in embryonic bone. 1,25-(OH)2-D binding activity in the chorioallantoic membrane increased 4- to 5-fold from day 12 to day 16 of incubation, immediately preceding the onset of shell reabsorption. This finding suggests that 1,25-(OH)2-D may act to regulate shell mobilization and transepithelial calcium transport by the chorioallantoic membrane. Finally, the similarity of shell mobilization to bone resorption, which is also stimulated by 1,25-(OH)2-D, suggests that the chorioallantoic membrane is a useful alternate model for the study of 1,25-(OH)2-D action on bone mineral metabolism.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(19)69236-7