Multistimuli Two-Color Luminescence Switching via Different Slip-Stacking of Highly Fluorescent Molecular Sheets
Color tuning and switching of the solid-state luminescence of organic materials are attractive subjects for both the fundamental research and practical applications such as optical recording. We report herein cyanostilbene-based highly luminescent molecular sheets which exhibit two-color fluorescenc...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2010-10, Vol.132 (39), p.13675-13683 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Color tuning and switching of the solid-state luminescence of organic materials are attractive subjects for both the fundamental research and practical applications such as optical recording. We report herein cyanostilbene-based highly luminescent molecular sheets which exhibit two-color fluorescence switching in response to pressure, temperature, and solvent vapor. The origin for the multistimuli luminescence switching is the two-directional shear-sliding capability of molecular sheets, which are formed via intermolecular multiple C−H···N and C−H···O hydrogen bonds. The resulting two distinctive crystal phases are promoted by different modes of local dipole coupling, which cause a substantial alternation of π−π overlap. These changes can be directly correlated with the subsequent intermolecular excitonic and excimeric coupling in both phases, as demonstrated by an in-depth theory-assisted spectroscopic and structural study. Finally, we have prepared a first device demonstrator for rewritable fluorescent optical recording media which showed multistimuli luminescence tuning with fast response. Our multistimuli responsive system is unique in terms of the slip-stacking of molecular sheets and thus provides a novel concept of rewritable fluorescent optical recording media. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja1044665 |