Multistimuli Two-Color Luminescence Switching via Different Slip-Stacking of Highly Fluorescent Molecular Sheets

Color tuning and switching of the solid-state luminescence of organic materials are attractive subjects for both the fundamental research and practical applications such as optical recording. We report herein cyanostilbene-based highly luminescent molecular sheets which exhibit two-color fluorescenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2010-10, Vol.132 (39), p.13675-13683
Hauptverfasser: Yoon, Seong-Jun, Chung, Jong Won, Gierschner, Johannes, Kim, Kil Suk, Choi, Moon-Gun, Kim, Dongho, Park, Soo Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Color tuning and switching of the solid-state luminescence of organic materials are attractive subjects for both the fundamental research and practical applications such as optical recording. We report herein cyanostilbene-based highly luminescent molecular sheets which exhibit two-color fluorescence switching in response to pressure, temperature, and solvent vapor. The origin for the multistimuli luminescence switching is the two-directional shear-sliding capability of molecular sheets, which are formed via intermolecular multiple C−H···N and C−H···O hydrogen bonds. The resulting two distinctive crystal phases are promoted by different modes of local dipole coupling, which cause a substantial alternation of π−π overlap. These changes can be directly correlated with the subsequent intermolecular excitonic and excimeric coupling in both phases, as demonstrated by an in-depth theory-assisted spectroscopic and structural study. Finally, we have prepared a first device demonstrator for rewritable fluorescent optical recording media which showed multistimuli luminescence tuning with fast response. Our multistimuli responsive system is unique in terms of the slip-stacking of molecular sheets and thus provides a novel concept of rewritable fluorescent optical recording media.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja1044665