Physical characteristics of 16 S rRNA under reconstitution conditions

The hydrodynamic shape and conformation of the 16 S ribosomal RNA in reconstitution buffer at both 4 degrees C and 37 degrees C were determined and compared with the corresponding properties of the 30 S ribosomal subunit at 4 degrees C in order to understand the role of the RNA molecule in the assem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1981-06, Vol.256 (12), p.6430-6434
Hauptverfasser: Tam, M F, Dodd, J A, Hill, W E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The hydrodynamic shape and conformation of the 16 S ribosomal RNA in reconstitution buffer at both 4 degrees C and 37 degrees C were determined and compared with the corresponding properties of the 30 S ribosomal subunit at 4 degrees C in order to understand the role of the RNA molecule in the assembly of the 30 S subunit. At 4 degrees C, the 16 S rRNA has a sedimentation coefficient s020,w of 21.0 S, a diffusion coefficient D020,w of 1.72 X 10(-7) cm2/s, a frictional coefficient f/fmin of 2.37, and a hydrodynamic radius of 125 A. At 37 degrees C, the 16 S rRNA has a sedimentation coefficient s020,w of 18.4 S, a diffusion coefficient D020,w of 1.39 X 10(-7) cm2/s, a frictional coefficient f/fmin of 2.91, and a hydrodynamic radius of 153 A. At 4 degrees C, the 30 S subunit has a sedimentation coefficient s020,w of 31.8 S, a diffusion coefficient D020,w of 1.97 X 10(-7) cm2/s, a frictional coefficient f/fmin of 1.77, and a hydrodynamic radius of 109 A. These results suggested that the free RNA in solution at 4 degrees C is less folded than the RNA in the ribosomal subunit. At 37 degrees C, the free 16 S rRNA is unfolded when compared to the structure of the same RNA at 4 degrees C. This implies that the folding step accompanying the RI to RI transformation in the assembly process needs the presence of both the RNA and core proteins.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(19)69183-0