The diguanylate cyclase YddV controls production of the exopolysaccharide poly-N-acetylglucosamine (PNAG) through regulation of the PNAG biosynthetic pgaABCD operon

In Gram-negative bacteria, production of adhesion factors and extracellular polysaccharides (EPS) is promoted by the activity of diguanylate cyclases (DGCs), a class of enzymes able to catalyse the synthesis of the signal molecule bis-(3',5')-cyclic di-guanylic acid (c-di-GMP). In this rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbiology (Society for General Microbiology) 2010-10, Vol.156 (Pt 10), p.2901-2911
Hauptverfasser: TAGLIABUE, Letizia, ANTONIANI, Davide, MACIAG, Anna, BOCCI, Paola, RAFFAELLI, Nadia, LANDINI, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Gram-negative bacteria, production of adhesion factors and extracellular polysaccharides (EPS) is promoted by the activity of diguanylate cyclases (DGCs), a class of enzymes able to catalyse the synthesis of the signal molecule bis-(3',5')-cyclic di-guanylic acid (c-di-GMP). In this report we show that in Escherichia coli, overexpression of the YddV protein, but not of other DGCs such as AdrA and YcdT, induces the production of the EPS poly-N-acetylglucosamine (PNAG) by stimulating expression of pgaABCD, the PNAG-biosynthetic operon. Stimulation of PNAG production and activation of pgaABCD expression by the YddV protein are abolished by inactivation of its GGDEF motif, responsible for DGC activity. Consistent with the effects of YddV overexpression, inactivation of the yddV gene negatively affects pgaABCD transcription and PNAG-mediated biofilm formation. pgaABCD regulation by the yddV gene also takes place in a mutant carrying a partial deletion of the csrA gene, which encodes the main regulator of pgaABCD expression, suggesting that YddV does not regulate pgaABCD through modulation of CsrA activity. Our results demonstrate that PNAG production does not simply respond to intracellular c-di-GMP concentration, but specifically requires the DGC activity of the YddV protein, thus supporting the notion that in E. coli, c-di-GMP biosynthesis by a given DGC protein triggers regulatory events that lead to activation of specific sets of EPS biosynthetic genes or proteins.
ISSN:1350-0872
1465-2080
DOI:10.1099/mic.0.041350-0