Localization of visual and auditory stimuli during smooth pursuit eye movements

Humans move their eyes more often than their heart beats. Although these eye movements induce large retinal image shifts, we perceive our world as stable. Yet, this perceptual stability is not complete. A number of studies have shown that visual targets which are briefly presented during such eye mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vision (Charlottesville, Va.) Va.), 2010-01, Vol.10 (8), p.8-8
Hauptverfasser: Königs, Kerstin, Bremmer, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Humans move their eyes more often than their heart beats. Although these eye movements induce large retinal image shifts, we perceive our world as stable. Yet, this perceptual stability is not complete. A number of studies have shown that visual targets which are briefly presented during such eye movements are mislocalized in a characteristic manner. It is largely unknown, however, if auditory stimuli are also mislocalized, i.e. whether or not perception generalizes across senses and space is represented supramodally. In our current study subjects were asked to localize brief visual and auditory stimuli that were presented during smooth pursuit in the dark. In addition, we measured auditory and visual detection thresholds. Confirming previous studies, perceived visual positions were shifted in direction of the pursuit. This shift was stronger for the hemifield the eye was heading towards (foveopetal). Perceptual auditory space was compressed towards the pursuit target (ventriloquism effect). This perceptual error was slightly reduced during pursuit as compared to fixation and differed clearly from the mislocalization of visual targets. While we found an influence of pursuit on localization, we found no such effect on the detection of visual and auditory stimuli. Taken together, our results do not provide evidence for the hypothesis of a supramodal representation of space during active oculomotor behavior.
ISSN:1534-7362
1534-7362
DOI:10.1167/10.8.8