Inactivation of purified human alpha 2-antiplasmin and purified human C1 inhibitor by synthetic fibrinolytic agents
3-Hydroxypropyl flufenamide (Flu-HPA) is one of a series of flufenamic acid derivatives that enhances blood clot lysis in vitro. Studies of possible mechanisms of action of Flu-HPA were undertaken. The profibrinolytic activity of Flu-HPA in clot lysis assays was found to be dependent on plasminogen....
Gespeichert in:
Veröffentlicht in: | Blood 1981-06, Vol.57 (6), p.1015-1024 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 3-Hydroxypropyl flufenamide (Flu-HPA) is one of a series of flufenamic acid derivatives that enhances blood clot lysis in vitro. Studies of possible mechanisms of action of Flu-HPA were undertaken. The profibrinolytic activity of Flu-HPA in clot lysis assays was found to be dependent on plasminogen. The influence of Flu-HPA on the ability of purified alpha 2-antiplasmin to inhibit purified plasmin was studied. Plasmin activity was determined using 125I-fibrin plates or the spectrophotometric tripeptide substrate, Val-Leu-Lys-paranitroanilide. At Flu-HPA concentrations greater than 1 mM, the inhibitory activity of alpha 2-antiplasmin was abolished in a time-dependent and concentration-dependent manner. The influence of Flu-HPA on the ability of purified Cl inhibitor to inhibit purified plasma kallikrein and beta-Factor XIIa was also studied. Cl inhibitor activity was abolished by Flu-HPA at concentrations greater than 2 mM. Notably, Flu-HPA up to 60 mM did not affect the amidolytic activities of plasmin, kallikrein, or beta-Factor XIIa. Flu-HPA did not release enzyme activity from preformed complexes of either alpha 2-antiplasmin and plasmin of Cl inhibitor and kallikrein. A water-soluble derivative of flufenamic acid, N-flufenamyl-glutamic acid, also inactivated alpha 2-antiplasm and Cl inhibitor. This inactivation was shown to be reversible. These results indicate that synthetic fibrinolytic compounds such as flufenamic acid derivatives may promote fibrinolysis by directly inactivating alpha 2-antiplasmin and Cl inhibitor. |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood.V57.6.1015.1015 |