Primate ABO glycosyltransferases : evidence for trans-species evolution

The human ABO blood group system is controlled by alleles at a single locus on chromosome 9. The alleles encode glycosyltransferases, which add different sugar residues to the terminal part of the oligosaccharide core, thus generating the A or B antigens; an allele encoding enzymatically inactive pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunogenetics (New York) 1993, Vol.37 (4), p.274-278
Hauptverfasser: MARTINKO, J. M, VINCEK, V, KLEIN, D, KLEIN, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The human ABO blood group system is controlled by alleles at a single locus on chromosome 9. The alleles encode glycosyltransferases, which add different sugar residues to the terminal part of the oligosaccharide core, thus generating the A or B antigens; an allele encoding enzymatically inactive protein is responsible for the blood group O. The A and B antigens are present not only in humans, but also in many other primate species and it has been proposed that the AB polymorphism was established long before these species diverged. Here we provide molecular evidence for the trans-species evolution of the AB polymorphism. Polymerase-chain reaction (PCR) amplification and sequencing has revealed that the critical substitutions differentiating the A and B genes occurred before the divergence of the lineages leading to humans, chimpanzees, gorillas, and orangutans. This polymorphism is therefore at least 13 million years old and is most likely maintained by selection. Comparison of the sequences derived from different species indicates that the difference in enzymatic activities between the A and B transferases is caused by two single nucleotide substitutions responsible for Leu-Met and Gly-Ala replacement at positions 265 and 267 in the polypeptide chains, respectively.
ISSN:0093-7711
1432-1211
DOI:10.1007/BF00187453