Zaragozic acids: a family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase

Three closely related fungal metabolites, zaragozic acids A, B, and C, that are potent inhibitors of squalene synthase have been isolated and characterized. Zaragozic acids A, B, and C were produced from an unidentified sterile fungal culture, Sporormiella intermedia, and Leptodontium elatius, respe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1993-01, Vol.90 (1), p.80-84
Hauptverfasser: Bergstrom, J.D. (Merck Research Laboratories, Rahway, NJ), Kurtz, M.M, Rew, D.J, Amend, A.M, Karkas, J.D, Bostedor, R.G, Bansal, V.S, Dufresne, C, VanMiddlesworth, F.L, Hensens, O.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three closely related fungal metabolites, zaragozic acids A, B, and C, that are potent inhibitors of squalene synthase have been isolated and characterized. Zaragozic acids A, B, and C were produced from an unidentified sterile fungal culture, Sporormiella intermedia, and Leptodontium elatius, respectively. The structures of the zaragozic acids and their trimethyl esters were determined by a combination of physical and chemical techniques. The zaragozic acids are characterized by a novel 2,8-dioxobicyclo[3.2.1]octane-4,6,7-trihydroxyl-3,4,5-tricarboxylic acid core and differ from each other in the structures of the 6-acyl and 1-alkyl side chains. They were found to be potent competitive inhibitors of rat liver squalene synthase with apparent Ki values of 78 pM, 29 pM, and 45 pM, respectively. They inhibited cholesterol synthesis in Hep G2 cells, and zaragozic acid A was an inhibitor of acute hepatic cholesterol synthesis in the mouse (50% inhibitory dose of 200 micrograms/kg of body weight). Inhibition of squalene synthase in cells and in vivo was accompanied by an accumulation of label from [3H]mevalonate into farnesyl diphosphate, farnesol, and organic acids. These data indicate that the zaragozic acids are a previously unreported class of therapeutic agents with potential for the treatment of hypercholesterolemia
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.90.1.80