SO and SO2 in mass-loss envelopes of red giants - Probes of nonequilibrium circumstellar chemistry and mass-loss rates

SO emission was searched for in one or more of four transitions toward 23 oxygen-rich red giant or supergiant stars and one S star, selected primarily on the basis of their nonmaser SiO emission. SO was detected in a total of 14 circumstellar envelopes, 13 of which are new detections. The circumstel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 1992-07, Vol.394 (1, Ju), p.320-339
Hauptverfasser: Sahai, Raghvendra, Wannier, Peter G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SO emission was searched for in one or more of four transitions toward 23 oxygen-rich red giant or supergiant stars and one S star, selected primarily on the basis of their nonmaser SiO emission. SO was detected in a total of 14 circumstellar envelopes, 13 of which are new detections. The circumstellar abundance of SO (and SO2) is significantly enhanced over the equilibrium value achieved in the photospheres of these stars. In general, the SO abundances are significantly larger than predicted by nonequilibrium circumstellar chemistry models. Sulfur cannot be significantly depleted onto circumstellar grains, and probably exists as H2S (and/or SH) in the inner regions of the envelopes. The SO rotational-level population in most circumstellar envelopes observed is characterized by excitation temperatures less than or approximately equal to 50 K. The circumstellar abundance of SO2 is comparable to, or larger than, that of SO, ruling out the 'large' value adopted for the unshielded photodissociation rate for SO2 in recent models.
ISSN:0004-637X
1538-4357
DOI:10.1086/171585