Numerical, experimental, and theoretical investigation of bubble aggregation and deformation in magnetic fluids

Deformation and aggregation of bubbles in magnetic fluid (ferrofluid) can be observed at high resolution by x-ray phase-contrast imaging. Images of gas bubbles in water-based ferrofluid (EMG-607/707) reveal that bubbles with diameters of a few hundreds of microns deform only slightly in applied fiel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2010-07, Vol.82 (1 Pt 2), p.016302-016302, Article 016302
Hauptverfasser: Lee, Wah Keat, Scardovelli, Ruben, Trubatch, A David, Yecko, Philip
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deformation and aggregation of bubbles in magnetic fluid (ferrofluid) can be observed at high resolution by x-ray phase-contrast imaging. Images of gas bubbles in water-based ferrofluid (EMG-607/707) reveal that bubbles with diameters of a few hundreds of microns deform only slightly in applied fields up to 0.2 T, becoming prolate along the field direction. Also, neighboring bubbles readily attract one another along the field direction, forming linear chains of two or more bubbles. Comparison of experimentally measured bubble trajectories with direct numerical simulations and theoretical predictions shows that aggregation of bubbles under an externally applied field is driven by the attractive magnetophoretic force resulting from the induced fields of the bubbles. Direct numerical simulations were performed with a volume-of-fluid code that incorporates a multiple-color function scheme, to suppress numerical bubble merger, as well as Maxwell stresses as an interfacial force.
ISSN:1539-3755
1550-2376
DOI:10.1103/physreve.82.016302