Prolonged depression of force developed by single motor units after their intermittent activation in adult cats

The fatigue of fast-twitch, glycolytic mammalian motor units [i.e., type FF; nomenclature of (3)] is dependent, in part, on the stimulation regimen (total number of stimuli, frequency, duty cycle, temporal patterning of stimuli, etc.) used to induce fatigue. To study the effect of the temporal patte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research bulletin 1993, Vol.30 (1), p.127-131
Hauptverfasser: Bevan, Leslie, Laouris, Yiannis, Garland, S.Jayne, Reinking, Robert M., Stuart, Douglas G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fatigue of fast-twitch, glycolytic mammalian motor units [i.e., type FF; nomenclature of (3)] is dependent, in part, on the stimulation regimen (total number of stimuli, frequency, duty cycle, temporal patterning of stimuli, etc.) used to induce fatigue. To study the effect of the temporal pattern of the stimulus train on the rate and extend of fatigue in single FF units, one theoretically acceptable approach would be to use each motor unit as its own control: i.e., a sequential testing with two fatigue tests that differ only in the temporal organization of their stimuli. The purpose of this communication is to provide evidence that such an approach is not feasible when studying FF units, due to the delayed recovery of force following their repetitive activation. It was shown that 1/s activation of single FF units for only 15 or 45 s with intermittent 40-Hz, 300-ms duration trains significantly reduced their force response to a double-pulse shock for several hours. This finding suggests that in studies designed to test for the effects of different stimulation patterns on the fatigue of single motor units, deeply anaesthetized, reduced animal preparations are not appropriate models for the sequential application of different stimulation regimens to fast-twitch, glycolytic, mammalian motor units.
ISSN:0361-9230
1873-2747
DOI:10.1016/0361-9230(93)90048-G