Magnetoencephalography reveals early activation of V4 in grapheme-color synesthesia

Grapheme-color synesthesia is a neurological phenomenon in which letters and numbers (graphemes) consistently evoke particular colors (e.g. A may be experienced as red). The cross-activation theory proposes that synesthesia arises as a result of cross-activation between posterior temporal grapheme a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2010-10, Vol.53 (1), p.268-274
Hauptverfasser: Brang, D., Hubbard, E.M., Coulson, S., Huang, M., Ramachandran, V.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Grapheme-color synesthesia is a neurological phenomenon in which letters and numbers (graphemes) consistently evoke particular colors (e.g. A may be experienced as red). The cross-activation theory proposes that synesthesia arises as a result of cross-activation between posterior temporal grapheme areas (PTGA) and color processing area V4, while the disinhibited feedback theory proposes that synesthesia arises from disinhibition of pre-existing feedback connections. Here we used magnetoencephalography (MEG) to test whether V4 and PTGA activate nearly simultaneously, as predicted by the cross-activation theory, or whether V4 activation occurs only after the initial stages of grapheme processing, as predicted by the disinhibited feedback theory. Using our high-resolution MEG source imaging technique (VESTAL), PTGA and V4 regions of interest (ROIs) were separately defined, and activity in response to the presentation of achromatic graphemes was measured. Activation levels in PTGA did not significantly differ between synesthetes and controls (suggesting similar grapheme processing mechanisms), whereas activation in V4 was significantly greater in synesthetes. In synesthetes, PTGA activation exceeded baseline levels beginning 105–109ms, and V4 activation did so 5ms later, suggesting nearly simultaneous activation of these areas. Results are discussed in the context of an updated version of the cross-activation model, the cascaded cross-tuning model of grapheme-color synesthesia. •Grapheme-color synesthesia involves direct interactions between V4 and grapheme areas•This result argues strongly against the disinhibited feedback model of synesthesia•Instead, we propose an updated version of the cross-activation model
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2010.06.008