Effect of fibre rotation on the initiation of re-entry in cardiac tissue

Transmural rotation of cardiac fibres can have a big influence on the initiation of re-entry in the heart. However, owing to computational demands, this has not been fully explored in a three-dimensional model of cardiac tissue that has a microscopic description of membrane currents, such as the Luo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 2001-07, Vol.39 (4), p.455-464
Hauptverfasser: VIGMOND, E. J, LEON, L. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transmural rotation of cardiac fibres can have a big influence on the initiation of re-entry in the heart. However, owing to computational demands, this has not been fully explored in a three-dimensional model of cardiac tissue that has a microscopic description of membrane currents, such as the Luo-Rudy model. Using a previously described model that is computationally fast, re-entry in three-dimensional blocks of cardiac tissue is induced by a cross-shock protocol, and the activity is examined. In the study, the effect of the transmural fibre rotation is ascertained by examining differences between a tissue block with no rotation and ones with 1, 2 and 3 degrees of rotation per fibre layer. The direction of the re-entry is significant in establishing whether or not re-entry can be induced, with clockwise re-entry being easier to initiate. Owing to the rotating anisotropy that results in preferential propagation along the fibre axis, the timing of the second stimulus in the cross-shock protocol has to be changed for different rates of fibre rotation. The fibre rotation either increases or decreases the window of opportunity for re-entry, depending on whether the activation front is perpendicular or parallel to the fibre direction. By varying the transmural extent of the S2, it is found that a deeper stimulus has to be applied to the blocks with fibre rotation to create re-entry. Increasing the transmural resistance also tends to reduce the extent of the S2 required to induce re-entry. Results suggest that increasing fibre rotation reduces the susceptibility of the tissue to re-entry, but that more complex spatiotemporal patterns are possible, e.g. stable figure-of-eight re-entries and transient rotors. Three mechanisms of re-entry annihilation are identified: front catchup, filling of the excitable gap and core wander.
ISSN:0140-0118
1741-0444
DOI:10.1007/BF02345368