Hydrogen peroxide inhibits photosynthetic electron transport in cells of cyanobacteria

The effect of H2O2 on photosynthetic O2 evolution and photosynthetic electron transfer in cells of cyanobacteria Anabaena variabilis and Anacystis nidulans was studied. The following experiments were performed: 1) directly testing the effect of exogenous H2O2; 2) testing the effect of intracellular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Moscow) 2001-06, Vol.66 (6), p.640-645
Hauptverfasser: Samuilov, V D, Bezryadnov, D B, Gusev, M V, Kitashov, A V, Fedorenko, T A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of H2O2 on photosynthetic O2 evolution and photosynthetic electron transfer in cells of cyanobacteria Anabaena variabilis and Anacystis nidulans was studied. The following experiments were performed: 1) directly testing the effect of exogenous H2O2; 2) testing the effect of intracellular H2O2 generated with the use of methyl viologen (MV); 3) testing the effect of inhibiting intracellular H2O2 decomposition by salicylic acid (SA) and 3-amino-1,2,4-triazole (AT). H2O2 inhibited photosynthetic O2 evolution and light-induced reduction of p-benzoquinone (BQ) + ferricyanide (FeCy) in the Hill reaction. The I50 value for H2O2 was ~0.75 mM. Photosynthetic electron transfer in the cells treated with H2O2 was not maintained by H2O2, NH2OH, 1,5-diphenylcarbazide, tetraphenylboron, or butylated hydroxytoluene added as artificial electron donors for Photosystem (PS) II. The H2O --> CO2, H2O --> MV (involving PSII and PSI) and H2O --> BQ + FeCy (chiefly dependent on PSII) electron transfer reactions were inhibited upon incubation of the cells with MV, SA, or AT. The N,N,N,N-tetramethyl-p-phenylenediamine --> MV (chiefly dependent on PSI) electron transfer was inhibited by SA and AT but was resistant to MV. The results show that H2O2 inhibits photosynthetic electron transfer. It is unlikely that H2O2 could be a physiological electron donor in oxygenic photosynthesis.
ISSN:0006-2979
1608-3040
DOI:10.1023/A:1010207314408