Synthesis Gas Production with an Adjustable H2/CO Ratio through the Coal Gasification Process: Effects of Coal Ranks And Methane Addition

With the decline of oil reserves and production, the gas-to-liquids (GTL) part of Fischer–Tropsch (F-T) synthesis technology has become increasing important. Synthesis gas (H2 + CO) with a stoichiometric ratio (H2/CO) at 2 or ranging from 1 to 2 is generally used in major synthesis-gas-based chemica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2008-05, Vol.22 (3), p.1720-1730
Hauptverfasser: Cao, Yan, Gao, Zhengyang, Jin, Jing, Zhou, Hongchang, Cohron, Marten, Zhao, Houying, Liu, Hongying, Pan, Weiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the decline of oil reserves and production, the gas-to-liquids (GTL) part of Fischer–Tropsch (F-T) synthesis technology has become increasing important. Synthesis gas (H2 + CO) with a stoichiometric ratio (H2/CO) at 2 or ranging from 1 to 2 is generally used in major synthesis-gas-based chemicals production. There are growing interests in the development of an alternative technology, other than the expensive natural-gas-based catalytic process, for cost-effective production of synthesis gas with a flexible hydrogen/carbon monoxide (H2/CO) ratio. Direct production of synthesis gas using coal as a cheap feedstock is attractive but challenging due to its low H2/CO ratio of generated synthesis gas. Three typical U.S. coals of different ranks were tested in a 2.5 in. coal gasifier to investigate their gasification reactivity and adjustability on H2/CO ratio of generated synthesis gas with or without the addition of methane. Tests indicated that lower-rank coals (lignite and sub-bituminous) have higher gasification reactivity than bituminous coals. The coal gasification reactivity is correlated to its synthesis-gas yield and the total percentage of H2 and CO in the synthesis gas, but not to the H2/CO ratio. The H2/CO ratio of coal gasification was found to be correlated to the rank of coals, especially the H/C ratio of coals. Methane addition into the dense phase of the pyrolysis and gasification zone of the cogasification reactor could make the best use of methane in adjusting the H2/CO ratio of the generated synthesis gas. The maximum methane conversion efficiency, which was likely correlated to its gasification reactivity, could be achieved by 70% on average for all tested coals. The actual catalytic effect of generated coal chars on methane conversion seemed coal-dependent. The coal-gasification process benefits from methane addition and subsequent conversion on the adjustment of the H2/CO ratio of synthesis gas. The methane conversion process benefits from the use of coal chars due to their catalytic effects. This implies that there were likely synergistic effects on both.
ISSN:0887-0624
1520-5029
DOI:10.1021/ef7005707