Hexamethonium modification of cardiovascular adjustments during combined static-dynamic arm exercise in monkeys

In weight lifting and rowing, essentially the same groups of muscles contract in isometric (static) and isotonic (dynamic) fashion. To approximate the combined static-dynamic arm movements involved in rowing or lifting weights, four rhesus monkeys were trained to pull a T-bar and thereby avoid tail...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacology, biochemistry and behavior biochemistry and behavior, 1980-12, Vol.13 (6), p.851-857
Hauptverfasser: Gaide, M.S., Klose, K.J., Gavin, W.J., Schneiderman, N., Robertson, T.W., Silbret, M., Faletti, M.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In weight lifting and rowing, essentially the same groups of muscles contract in isometric (static) and isotonic (dynamic) fashion. To approximate the combined static-dynamic arm movements involved in rowing or lifting weights, four rhesus monkeys were trained to pull a T-bar and thereby avoid tail shock. Each animal received 8 daily test sessions in which loads (0.4, 0.8, 1.2, 1.6 kg), total pulls (3, 6, 9, 12 at a constant pull frequency, 0.5 Hz) and alternate sessions of pulling after injection of hexamethonium chloride (7 mg/kg) or saline were factorially combined. Our data indicate that heart rate in this model is primarily influenced by the duration of the dynamic exercise component (number of pulls) in this specific exercise task whereas both dynamic and static components affect systolic and diastolic blood pressure. After ganglionic blockade, heart rate and diastolic pressure do not change appreciably during T-bar pulling while the rise in systolic pressure is attenuated and varies primarily as a function of the static exercise component. The clinical implications of these experiments are discussed.
ISSN:0091-3057
1873-5177
DOI:10.1016/0091-3057(80)90218-X