Pooled spike trains of correlated presynaptic inputs as realizations of cluster point processes

The pooled spike trains of correlated presynaptic terminals acting synchronously upon a single neuron are realizations of cluster point processes: the notions of spikes synchronizing in bursts and of points bunching in clusters are conceptually identical. The primary processes constituent specifies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological cybernetics 2005-02, Vol.92 (2), p.110-127
Hauptverfasser: Gómez, Leonel, Budelli, Ruben, Saa, Rafael, Stiber, Michael, Segundo, José Pedro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pooled spike trains of correlated presynaptic terminals acting synchronously upon a single neuron are realizations of cluster point processes: the notions of spikes synchronizing in bursts and of points bunching in clusters are conceptually identical. The primary processes constituent specifies the timing of the cluster series; subsidiary processes and poolings specify burst structure and tightness. This representation and the Poisson process representation of independent terminals complete the formal approach to pooled trains. The notion's usefulness was illustrated by expressing physiological questions in terms of those constituents, each possessing a clear biological embodiment; constituents provided the control variables in simulations using leaky integrate-and-fire postsynaptic neurons excited by multiple weak terminals. Regular or irregular primary processes and bursts series determined low or high postsynaptic dispersions. When convergent set synchrony increased, its postsynaptic consequences approached those of single powerful synapses; concomitantly, output spike trains approached periodic, quasiperiodic, or aperiodic behaviors. The sequence in which terminals fired within bursts affected the predictee and predictor roles of presynaptic and postsynaptic spikes; when inhibition was added, EPSP and IPSP delays and order were influential (summation was noncommutative). Outputs to different correlations were heterogeneous; heterogeneity was accentuated by conditioning by variables such as DC biases.
ISSN:0340-1200
1432-0770
DOI:10.1007/s00422-004-0534-y