MR imaging of the ankle at 3 Tesla and 1.5 Tesla: protocol optimization and application to cartilage, ligament and tendon pathology in cadaver specimens
The objective of this study was to optimize ankle joint MR imaging in volunteers at 1.5 Tesla (T) and 3.0 T, and to compare these optimized sequences concerning image quality and performance in assessing cartilage, ligament and tendon pathology in fresh human cadaver specimens. Initially our clinica...
Gespeichert in:
Veröffentlicht in: | European radiology 2007-06, Vol.17 (6), p.1518-1528 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The objective of this study was to optimize ankle joint MR imaging in volunteers at 1.5 Tesla (T) and 3.0 T, and to compare these optimized sequences concerning image quality and performance in assessing cartilage, ligament and tendon pathology in fresh human cadaver specimens. Initially our clinical ankle protocol consisting of T1-weighted (-w), fat-saturated (fs) T2-w, and short tau inversion-recovery fast spinecho (FSE) sequences was optimized at 1.5 T and 3.0 T by two radiologists. For dedicated cartilage imaging, fs-intermediate (IM)-w FSE, fs spoiled gradient echo, and balanced free-precession steady-state sequences were optimized. Using the optimized sequences, thirteen cadaver ankle joints were imaged. Four radiologists independently assessed these images concerning image quality and pathology. All radiologists consistently rated image quality higher at 3.0 T (all sequences p |
---|---|
ISSN: | 0938-7994 1432-1084 |
DOI: | 10.1007/s00330-006-0446-4 |