Influence of measurement noise and electrode mislocalisation on EEG dipole-source localisation

Measurement noise in the electro-encephalogram (EEG) and inaccurate information about the locations of the EEG electrodes on the head induce localisation errors in the results of EEG dipole source analysis. These errors are studied by performing dipole source localisation for simulated electrode pot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 2000-05, Vol.38 (3), p.287-296
Hauptverfasser: Van Hoey, G, Vanrumste, B, D'Havé, M, Van de Walle, R, Lemahieu, I, Boon, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Measurement noise in the electro-encephalogram (EEG) and inaccurate information about the locations of the EEG electrodes on the head induce localisation errors in the results of EEG dipole source analysis. These errors are studied by performing dipole source localisation for simulated electrode potentials in a spherical head model, for a range of different dipole locations and for two different numbers (27 and 148) of electrodes. Dipole source localisation is performed by iteratively minimising the residual energy (RE), using the simplex algorithm. The ratio of the dipole localisation error (cm) to the noise level (%) of Gaussian measurement noise amounts to 0.15 cm/% and 0.047 cm/% for the 27 and 148 electrode configurations, respectively, for a radial dipole with 40% eccentricity The localisation error due to noise can be reduced by taking into account multiple time instants of the measured potentials. In the case of random displacements of the EEG electrodes, the ratio of dipole localisation errors to electrode location errors amounts to 0.78 cm-1 cm and 0.27 cm-1 cm for the 27 and 148 electrode configurations, respectively. It is concluded that it is important to reduce the measurement noise, and particularly the electrode mislocalisation, as the influence of the latter is not reduced by taking into account multiple time instants.
ISSN:0140-0118
1741-0444
DOI:10.1007/BF02347049