Pyrolysis of fast-growing aquatic biomass – Lemna minor (duckweed): Characterization of pyrolysis products

The aim of this work was to conduct the experimental study of pyrolysis of fast-growing aquatic biomass – Lemna minor (commonly known as duckweed) with the emphasis on the characterization of main products of pyrolysis. The yields of pyrolysis gas, pyrolytic oil (bio-oil) and char were determined as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2010-11, Vol.101 (21), p.8424-8428
Hauptverfasser: Muradov, Nazim, Fidalgo, Beatriz, Gujar, Amit C., T-Raissi, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this work was to conduct the experimental study of pyrolysis of fast-growing aquatic biomass – Lemna minor (commonly known as duckweed) with the emphasis on the characterization of main products of pyrolysis. The yields of pyrolysis gas, pyrolytic oil (bio-oil) and char were determined as a function of pyrolysis temperature and the sweep gas (Ar) flow rate. Thermogravimetric/differential thermogravimetric (TG/DTG) analyses of duckweed samples in inert (helium gas) and oxidative (air) atmosphere revealed differences in the TG/DTG patterns obtained for duckweed and typical plant biomass. The bio-oil samples produced by duckweed pyrolysis at different reaction conditions were analyzed using GC–MS technique. It was found that pyrolysis temperature had minor effect on the bio-oil product slate, but exerted major influence on the relative quantities of the individual pyrolysis products obtained. While, the residence time of the pyrolysis vapors had negligible effect on the yield and composition of the duckweed pyrolysis products.
ISSN:0960-8524
1873-2976
DOI:10.1016/j.biortech.2010.05.089