Synthesis, characterization, antimicrobial activity and LPS-interaction properties of SB041, a novel dendrimeric peptide with antimicrobial properties
Multimeric peptides offer several advantages with respect to their monomeric counterparts, as increased activity and greater stability to peptidases and proteases. SB041 is a novel antimicrobial peptide with dendrimeric structure; it is a tetramer of pyrEKKIRVRLSA linked by a lysine core, with an am...
Gespeichert in:
Veröffentlicht in: | Peptides (New York, N.Y. : 1980) N.Y. : 1980), 2010-08, Vol.31 (8), p.1459-1467 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multimeric peptides offer several advantages with respect to their monomeric counterparts, as increased activity and greater stability to peptidases and proteases. SB041 is a novel antimicrobial peptide with dendrimeric structure; it is a tetramer of pyrEKKIRVRLSA linked by a lysine core, with an amino valeric acid chain. Here, we report on its synthesis, NMR characterization, antimicrobial activity, and LPS-interaction properties. The peptide was especially active against Gram-negative strains, with a potency comparable (on molar basis) to that of lipopeptides colistin and polymixin B, but it also displayed some activity against selected Gram-positive strains. Following these indications, we investigated the efficacy of SB041 in binding
Escherichia coli and
Pseudomonas aeruginosa LPS
in vitro and counteracting its biological effects in RAW-Blue™ cells, derived from RAW 264.7 macrophages. SB041 strongly bound purified LPS, especially that of
E. coli, as proved by fluorescent displacement assay, and readily penetrated into LPS monolayers. However, the killing activity of SB041 against
E. coli was not inhibited by increasing concentrations of LPS added to the medium. Checking the SB041 effect on LPS-induced activation of pattern recognition receptors (PRRs) in Raw-Blue cells revealed that while the peptide gave a statistically significant decrease in PRRs stimulation when RAW-Blue cells were challenged with
P. aeruginosa LPS, the same was not seen when
E. coli LPS was used to activate innate immune defense-like responses. Thus, as previously seen for other antimicrobial peptides, also for SB041 binding to LPS did not translate necessarily into LPS-neutralizing activity, suggesting that SB041–LPS interactions must be of complex nature. |
---|---|
ISSN: | 0196-9781 1873-5169 |
DOI: | 10.1016/j.peptides.2010.04.022 |