Isopycnal diffusivities in the Antarctic Circumpolar Current inferred from Lagrangian floats in an eddying model

Lagrangian subsurface isopycnal eddy diffusivities are calculated from numerical floats released in several regions of the Antarctic Circumpolar Current (ACC) of the 0.1° Parallel Ocean Program. Lagrangian diffusivities are horizontally highly variable with no consistent latitudinal dependence. Elev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Oceans 2010-06, Vol.115 (C6), p.n/a
Hauptverfasser: Griesel, A., Gille, S. T., Sprintall, J., McClean, J. L., LaCasce, J. H., Maltrud, M. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lagrangian subsurface isopycnal eddy diffusivities are calculated from numerical floats released in several regions of the Antarctic Circumpolar Current (ACC) of the 0.1° Parallel Ocean Program. Lagrangian diffusivities are horizontally highly variable with no consistent latitudinal dependence. Elevated values are found in some areas in the core of the ACC, near topographic features, and close to the Brazil‐Malvinas Confluence Zone and Agulhas Retroflection. Cross‐stream eddy diffusivities are depth invariant in the model ACC. An increase of Lagrangian eddy length scales with depth is masked by the strong decrease with depth of eddy velocities. The cross‐stream diffusivities average 750 ± 250 m2 s−1 around the Polar Frontal Zone. The results imply that parameterizations that (only) use eddy kinetic energy to parameterize the diffusivities are incomplete. We suggest that dominant correlations of Lagrangian eddy diffusivities with eddy kinetic energy found in previous studies may have been due to the use of too short time lags in the integration of the velocity autocovariance used to infer the diffusivities. We find evidence that strong mean flow inhibits cross‐stream mixing within the ACC, but there are also areas where cross‐stream diffusivities are large in spite of strong mean flows, for example, in regions close to topographic obstacles such as the Kerguelen Plateau.
ISSN:0148-0227
2169-9275
2156-2202
2169-9291
DOI:10.1029/2009JC005821