A numerical model for the coupled long-term evolution of salt marshes and tidal flats
A one‐dimensional numerical model for the coupled long‐term evolution of salt marshes and tidal flats is presented. The model framework includes tidal currents, wind waves, sediment erosion, and deposition, as well as the effect of vegetation on sediment dynamics. The model is used to explore the ev...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research. B. Solid Earth 2010-01, Vol.115 (F1), p.np-n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | F1 |
container_start_page | np |
container_title | Journal of Geophysical Research. B. Solid Earth |
container_volume | 115 |
creator | Mariotti, Giulio Fagherazzi, Sergio |
description | A one‐dimensional numerical model for the coupled long‐term evolution of salt marshes and tidal flats is presented. The model framework includes tidal currents, wind waves, sediment erosion, and deposition, as well as the effect of vegetation on sediment dynamics. The model is used to explore the evolution of the marsh boundary under different scenarios of sediment supply and sea level rise. Numerical results show that vegetation determines the rate of marsh progradation and regression and plays a critical role in the redistribution of sediments within the intertidal area. Simulations indicate that the scarp between salt marsh and tidal flat is a distinctive feature of marsh retreat. For a given sediment supply the marsh can prograde or erode as a function of sea level rise. A low rate of sea level rise reduces the depth of the tidal flat increasing wave dissipation. Sediment deposition is thus favored, and the marsh boundary progrades. A high rate of sea level rise leads to a deeper tidal flat and therefore higher waves that erode the marsh boundary, leading to erosion. When the rate of sea level rise is too high the entire marsh drowns and is transformed into a tidal flat. |
doi_str_mv | 10.1029/2009JF001326 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754560612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21335698</sourcerecordid><originalsourceid>FETCH-LOGICAL-a6591-900589073c61434bf08cf1de5a8693136a38a31926ccc62691814959e5dbca523</originalsourceid><addsrcrecordid>eNqF0stu1DAUBuAIgcSodMcDWEhcFgTO8S32shqYgaoaxKViabmOQ1OceGonQN8ej6aqEIupN958_y_Z51TVU4Q3CFS_pQD6dAWAjMoH1YKikDWlQB9WC0CuaqC0eVwd53wF5XAhOeCiOj8h4zz41DsbyBBbH0gXE5kuPXFx3gbfkhDHH_Xk00D8rxjmqY8jiR3JNkxksClf-kzs2JKpb0tHF-yUn1SPOhuyP769j6rz1ftvyw_12af1x-XJWW2l0FhrAKE0NMxJ5IxfdKBch60XVknNkEnLlGWoqXTOSSo1KuRaaC_aC2cFZUfVy33vNsXr2efJDH12PgQ7-jhn04jyTpC4ky8OSiaZ1lLyeyFFxoTUqsBXByEqULIBhuJ-KjmllAu1o8_-o1dxTmP5RKMkInBNoaDXe-RSzDn5zmxTX0ZxYxDMbhnMv8tQ-PPbTpvLmLtkR9fnu0zZC8GoZsXh3v3ug7852GlO119WUmDJ1PtMnyf_5y5j008jG9YI832zNl83uPm81Gvzjv0FvebMYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861104920</pqid></control><display><type>article</type><title>A numerical model for the coupled long-term evolution of salt marshes and tidal flats</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Mariotti, Giulio ; Fagherazzi, Sergio</creator><creatorcontrib>Mariotti, Giulio ; Fagherazzi, Sergio</creatorcontrib><description>A one‐dimensional numerical model for the coupled long‐term evolution of salt marshes and tidal flats is presented. The model framework includes tidal currents, wind waves, sediment erosion, and deposition, as well as the effect of vegetation on sediment dynamics. The model is used to explore the evolution of the marsh boundary under different scenarios of sediment supply and sea level rise. Numerical results show that vegetation determines the rate of marsh progradation and regression and plays a critical role in the redistribution of sediments within the intertidal area. Simulations indicate that the scarp between salt marsh and tidal flat is a distinctive feature of marsh retreat. For a given sediment supply the marsh can prograde or erode as a function of sea level rise. A low rate of sea level rise reduces the depth of the tidal flat increasing wave dissipation. Sediment deposition is thus favored, and the marsh boundary progrades. A high rate of sea level rise leads to a deeper tidal flat and therefore higher waves that erode the marsh boundary, leading to erosion. When the rate of sea level rise is too high the entire marsh drowns and is transformed into a tidal flat.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9003</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9011</identifier><identifier>DOI: 10.1029/2009JF001326</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Boundaries ; Earth sciences ; Earth, ocean, space ; ecogeomorphology ; Erosion rates ; Evolution ; Exact sciences and technology ; Geobiology ; Geophysics ; High performance computing ; Intertidal zone ; Marine ; marsh boundary erosion ; Marshes ; Mathematical models ; Physical oceanography ; Planetology ; Planets ; Salt marshes ; Sea level ; Sea level rise ; Sediments ; Tidal currents ; Tidal flats ; Vegetation effects ; Wind waves</subject><ispartof>Journal of Geophysical Research. B. Solid Earth, 2010-01, Vol.115 (F1), p.np-n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a6591-900589073c61434bf08cf1de5a8693136a38a31926ccc62691814959e5dbca523</citedby><cites>FETCH-LOGICAL-a6591-900589073c61434bf08cf1de5a8693136a38a31926ccc62691814959e5dbca523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009JF001326$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009JF001326$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22753293$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mariotti, Giulio</creatorcontrib><creatorcontrib>Fagherazzi, Sergio</creatorcontrib><title>A numerical model for the coupled long-term evolution of salt marshes and tidal flats</title><title>Journal of Geophysical Research. B. Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>A one‐dimensional numerical model for the coupled long‐term evolution of salt marshes and tidal flats is presented. The model framework includes tidal currents, wind waves, sediment erosion, and deposition, as well as the effect of vegetation on sediment dynamics. The model is used to explore the evolution of the marsh boundary under different scenarios of sediment supply and sea level rise. Numerical results show that vegetation determines the rate of marsh progradation and regression and plays a critical role in the redistribution of sediments within the intertidal area. Simulations indicate that the scarp between salt marsh and tidal flat is a distinctive feature of marsh retreat. For a given sediment supply the marsh can prograde or erode as a function of sea level rise. A low rate of sea level rise reduces the depth of the tidal flat increasing wave dissipation. Sediment deposition is thus favored, and the marsh boundary progrades. A high rate of sea level rise leads to a deeper tidal flat and therefore higher waves that erode the marsh boundary, leading to erosion. When the rate of sea level rise is too high the entire marsh drowns and is transformed into a tidal flat.</description><subject>Boundaries</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>ecogeomorphology</subject><subject>Erosion rates</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Geobiology</subject><subject>Geophysics</subject><subject>High performance computing</subject><subject>Intertidal zone</subject><subject>Marine</subject><subject>marsh boundary erosion</subject><subject>Marshes</subject><subject>Mathematical models</subject><subject>Physical oceanography</subject><subject>Planetology</subject><subject>Planets</subject><subject>Salt marshes</subject><subject>Sea level</subject><subject>Sea level rise</subject><subject>Sediments</subject><subject>Tidal currents</subject><subject>Tidal flats</subject><subject>Vegetation effects</subject><subject>Wind waves</subject><issn>0148-0227</issn><issn>2169-9003</issn><issn>2156-2202</issn><issn>2169-9011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0stu1DAUBuAIgcSodMcDWEhcFgTO8S32shqYgaoaxKViabmOQ1OceGonQN8ej6aqEIupN958_y_Z51TVU4Q3CFS_pQD6dAWAjMoH1YKikDWlQB9WC0CuaqC0eVwd53wF5XAhOeCiOj8h4zz41DsbyBBbH0gXE5kuPXFx3gbfkhDHH_Xk00D8rxjmqY8jiR3JNkxksClf-kzs2JKpb0tHF-yUn1SPOhuyP769j6rz1ftvyw_12af1x-XJWW2l0FhrAKE0NMxJ5IxfdKBch60XVknNkEnLlGWoqXTOSSo1KuRaaC_aC2cFZUfVy33vNsXr2efJDH12PgQ7-jhn04jyTpC4ky8OSiaZ1lLyeyFFxoTUqsBXByEqULIBhuJ-KjmllAu1o8_-o1dxTmP5RKMkInBNoaDXe-RSzDn5zmxTX0ZxYxDMbhnMv8tQ-PPbTpvLmLtkR9fnu0zZC8GoZsXh3v3ug7852GlO119WUmDJ1PtMnyf_5y5j008jG9YI832zNl83uPm81Gvzjv0FvebMYg</recordid><startdate>20100119</startdate><enddate>20100119</enddate><creator>Mariotti, Giulio</creator><creator>Fagherazzi, Sergio</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7TN</scope><scope>H95</scope><scope>7SM</scope></search><sort><creationdate>20100119</creationdate><title>A numerical model for the coupled long-term evolution of salt marshes and tidal flats</title><author>Mariotti, Giulio ; Fagherazzi, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a6591-900589073c61434bf08cf1de5a8693136a38a31926ccc62691814959e5dbca523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Boundaries</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>ecogeomorphology</topic><topic>Erosion rates</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Geobiology</topic><topic>Geophysics</topic><topic>High performance computing</topic><topic>Intertidal zone</topic><topic>Marine</topic><topic>marsh boundary erosion</topic><topic>Marshes</topic><topic>Mathematical models</topic><topic>Physical oceanography</topic><topic>Planetology</topic><topic>Planets</topic><topic>Salt marshes</topic><topic>Sea level</topic><topic>Sea level rise</topic><topic>Sediments</topic><topic>Tidal currents</topic><topic>Tidal flats</topic><topic>Vegetation effects</topic><topic>Wind waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mariotti, Giulio</creatorcontrib><creatorcontrib>Fagherazzi, Sergio</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mariotti, Giulio</au><au>Fagherazzi, Sergio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical model for the coupled long-term evolution of salt marshes and tidal flats</atitle><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010-01-19</date><risdate>2010</risdate><volume>115</volume><issue>F1</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>0148-0227</issn><issn>2169-9003</issn><eissn>2156-2202</eissn><eissn>2169-9011</eissn><abstract>A one‐dimensional numerical model for the coupled long‐term evolution of salt marshes and tidal flats is presented. The model framework includes tidal currents, wind waves, sediment erosion, and deposition, as well as the effect of vegetation on sediment dynamics. The model is used to explore the evolution of the marsh boundary under different scenarios of sediment supply and sea level rise. Numerical results show that vegetation determines the rate of marsh progradation and regression and plays a critical role in the redistribution of sediments within the intertidal area. Simulations indicate that the scarp between salt marsh and tidal flat is a distinctive feature of marsh retreat. For a given sediment supply the marsh can prograde or erode as a function of sea level rise. A low rate of sea level rise reduces the depth of the tidal flat increasing wave dissipation. Sediment deposition is thus favored, and the marsh boundary progrades. A high rate of sea level rise leads to a deeper tidal flat and therefore higher waves that erode the marsh boundary, leading to erosion. When the rate of sea level rise is too high the entire marsh drowns and is transformed into a tidal flat.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009JF001326</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research. B. Solid Earth, 2010-01, Vol.115 (F1), p.np-n/a |
issn | 0148-0227 2169-9003 2156-2202 2169-9011 |
language | eng |
recordid | cdi_proquest_miscellaneous_754560612 |
source | Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Boundaries Earth sciences Earth, ocean, space ecogeomorphology Erosion rates Evolution Exact sciences and technology Geobiology Geophysics High performance computing Intertidal zone Marine marsh boundary erosion Marshes Mathematical models Physical oceanography Planetology Planets Salt marshes Sea level Sea level rise Sediments Tidal currents Tidal flats Vegetation effects Wind waves |
title | A numerical model for the coupled long-term evolution of salt marshes and tidal flats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A09%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20model%20for%20the%20coupled%20long-term%20evolution%20of%20salt%20marshes%20and%20tidal%20flats&rft.jtitle=Journal%20of%20Geophysical%20Research.%20B.%20Solid%20Earth&rft.au=Mariotti,%20Giulio&rft.date=2010-01-19&rft.volume=115&rft.issue=F1&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2009JF001326&rft_dat=%3Cproquest_cross%3E21335698%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861104920&rft_id=info:pmid/&rfr_iscdi=true |