A numerical model for the coupled long-term evolution of salt marshes and tidal flats

A one‐dimensional numerical model for the coupled long‐term evolution of salt marshes and tidal flats is presented. The model framework includes tidal currents, wind waves, sediment erosion, and deposition, as well as the effect of vegetation on sediment dynamics. The model is used to explore the ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. B. Solid Earth 2010-01, Vol.115 (F1), p.np-n/a
Hauptverfasser: Mariotti, Giulio, Fagherazzi, Sergio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A one‐dimensional numerical model for the coupled long‐term evolution of salt marshes and tidal flats is presented. The model framework includes tidal currents, wind waves, sediment erosion, and deposition, as well as the effect of vegetation on sediment dynamics. The model is used to explore the evolution of the marsh boundary under different scenarios of sediment supply and sea level rise. Numerical results show that vegetation determines the rate of marsh progradation and regression and plays a critical role in the redistribution of sediments within the intertidal area. Simulations indicate that the scarp between salt marsh and tidal flat is a distinctive feature of marsh retreat. For a given sediment supply the marsh can prograde or erode as a function of sea level rise. A low rate of sea level rise reduces the depth of the tidal flat increasing wave dissipation. Sediment deposition is thus favored, and the marsh boundary progrades. A high rate of sea level rise leads to a deeper tidal flat and therefore higher waves that erode the marsh boundary, leading to erosion. When the rate of sea level rise is too high the entire marsh drowns and is transformed into a tidal flat.
ISSN:0148-0227
2169-9003
2156-2202
2169-9011
DOI:10.1029/2009JF001326