LapF, the second largest Pseudomonas putida protein, contributes to plant root colonization and determines biofilm architecture

We have investigated the role of LapF, one of the two largest proteins encoded in the genome of Pseudomonas putida KT2440, in bacterial colonization of solid surfaces. LapF is 6310 amino acids long, and is localized on the cell surface. The C-terminal region of the protein is essential for its secre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2010-08, Vol.77 (3), p.549-561
Hauptverfasser: Martínez-Gil, Marta, Yousef-Coronado, Fátima, Espinosa-Urgel, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have investigated the role of LapF, one of the two largest proteins encoded in the genome of Pseudomonas putida KT2440, in bacterial colonization of solid surfaces. LapF is 6310 amino acids long, and is localized on the cell surface. The C-terminal region of the protein is essential for its secretion, which presumably requires the ABC transporter encoded by an operon (lapHIJ) adjacent to the lapF gene. Although the initial attachment stages are not different between the wild type and a lapF mutant, microcolony formation and subsequent development of a mature biofilm is impaired in the mutant. This is consistent with the expression pattern of lapF; activation of its promoter takes place at late stages of growth and is regulated by the alternative sigma factor RpoS. A lapF mutant is also affected in individual and competitive plant root colonization. In these assays, mixed microcolonies formed by cells of both the wild-type and the mutant strains could be observed but microcolonies of the mutant alone were not found. These data and the localization of the protein at discrete spots in areas of contact between cells in biofilms suggest that LapF determines the establishment of cell-cell interactions during sessile growth.
ISSN:0950-382X
1365-2958
DOI:10.1111/j.1365-2958.2010.07249.x