p.R254Q mutation in the aquaporin-2 water channel causing dominant nephrogenic diabetes insipidus is due to a lack of arginine vasopressin-induced phosphorylation
Vasopressin regulates human water homeostasis by re-distributing homotetrameric aquaporin-2 (AQP2) water channels from intracellular vesicles to the apical membrane of renal principal cells, a process in which phosphorylation of AQP2 at S256 by cAMP-dependent protein kinase A (PKA) is thought to be...
Gespeichert in:
Veröffentlicht in: | Human mutation 2009-10, Vol.30 (10), p.E891-E903 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vasopressin regulates human water homeostasis by re-distributing homotetrameric aquaporin-2 (AQP2) water channels from intracellular vesicles to the apical membrane of renal principal cells, a process in which phosphorylation of AQP2 at S256 by cAMP-dependent protein kinase A (PKA) is thought to be essential. Dominant nephrogenic diabetes insipidus (NDI), a disease in which the kidney is unable to concentrate urine in response to vasopressin, is caused by AQP2 gene mutations. Here, we investigated a reported patient case of dominant NDI caused by a novel p.R254Q mutation. Expressed in oocytes, AQP2-p.R254Q appeared to be a functional water channel, but was impaired in its transport to the cell surface to the same degree as AQP2-p.S256A, which mimics non-phosphorylated AQP2. In polarized MDCK cells, AQP2-p.R254Q was retained and was distributed similarly to that of unstimulated wt-AQP2 or AQP2-p.S256A. Upon co-expression, AQP2-p.R254Q interacted with, and retained wt-AQP2 in intracellular vesicles. In contrast to wild-type AQP2, forskolin did not increase AQP2-p.R254Q phosphorylation at S256 or its translocation to the apical membrane. Mimicking constitutive phosphorylation in AQP2-p.R254Q with the p.S256D mutation, however, rescued its apical membrane expression. These date indicate that a lack of S256 phosphorylation is the sole cause of dominant NDI here, and thereby, p.R254Q is a loss of function instead of a gain of function mutation in dominant NDI. |
---|---|
ISSN: | 1059-7794 1098-1004 |
DOI: | 10.1002/humu.21082 |