Bestrophin 2: An anion channel associated with neurogenesis in chemosensory systems

The chemosensory neuroepithelia of the vertebrate olfactory system share a life‐long ability to regenerate. Novel neurons proliferate from basal stem cells that continuously replace old or damaged sensory neurons. The sensory neurons of the mouse and rat olfactory system specifically express bestrop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of comparative neurology (1911) 2009-08, Vol.515 (5), p.585-599
Hauptverfasser: Klimmeck, Daniel, Daiber, Philipp C., Brühl, Anja, Baumann, Arnd, Frings, Stephan, Möhrlen, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The chemosensory neuroepithelia of the vertebrate olfactory system share a life‐long ability to regenerate. Novel neurons proliferate from basal stem cells that continuously replace old or damaged sensory neurons. The sensory neurons of the mouse and rat olfactory system specifically express bestrophin 2, a member of the bestrophin family of calcium‐activated chloride channels. This channel was recently proposed to operate as a transduction channel in olfactory sensory cilia. We raised a polyclonal antibody against bestrophin 2 and characterized the expression pattern of this protein in the mouse main olfactory epithelium, septal organ of Masera, and vomeronasal organ. Comparison with the maturation markers growth‐associated protein 43 and olfactory marker protein revealed that bestrophin 2 was expressed in developing sensory neurons of all chemosensory neuroepithelia, but was restricted to proximal cilia in mature sensory neurons. Our results suggest that bestrophin 2 plays a critical role during differentiation and growth of axons and cilia. In mature olfactory receptor neurons, it appears to support growth and function of sensory cilia. J. Comp. Neurol. 515:585–599, 2009. © 2009 Wiley‐Liss, Inc.
ISSN:0021-9967
1096-9861
DOI:10.1002/cne.22075