Surface Functionalization of Living Cells with Multilayer Patches

We demonstrate that functional polyelectrolyte multilayer (PEM) patches can be attached to a fraction of the surface area of living, individual lymphocytes. Surface-modified cells remain viable at least 48 h following attachment of the functional patch, and patches carrying magnetic nanoparticles al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2008-12, Vol.8 (12), p.4446-4453
Hauptverfasser: Swiston, Albert J, Cheng, Connie, Um, Soong Ho, Irvine, Darrell J, Cohen, Robert E, Rubner, Michael F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate that functional polyelectrolyte multilayer (PEM) patches can be attached to a fraction of the surface area of living, individual lymphocytes. Surface-modified cells remain viable at least 48 h following attachment of the functional patch, and patches carrying magnetic nanoparticles allow the cells to be spatially manipulated using a magnetic field. The patch does not completely occlude the cellular surface from the surrounding environment; this approach allows a functional payload to be attached to a cell that is still free to perform its native functions, as suggested by preliminary studies on patch-modified T-cell migration. This approach has potential for broad applications in bioimaging, cellular functionalization, immune system and tissue engineering, and cell-based therapeutics where cell−environment interactions are critical.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl802404h