Polymers from Functional Macrolactones as Potential Biomaterials: Enzymatic Ring Opening Polymerization, Biodegradation, and Biocompatibility

We systematically investigated a series of polymers derived from macrolactones, namely, pentadecalactone, hexadecalactone, and their unsaturated analogues ambrettolide and globalide as potential biomaterials. By enzymatic ring-opening polymerization these monomers can conveniently be polymerized to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2008-12, Vol.9 (12), p.3404-3410
Hauptverfasser: van der Meulen, Inge, de Geus, Matthijs, Antheunis, Harro, Deumens, Ronald, Joosten, Elbert A. J, Koning, Cor E, Heise, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We systematically investigated a series of polymers derived from macrolactones, namely, pentadecalactone, hexadecalactone, and their unsaturated analogues ambrettolide and globalide as potential biomaterials. By enzymatic ring-opening polymerization these monomers can conveniently be polymerized to high molecular weight. The polymers are highly crystalline with melting points around 95 °C for the saturated polymers and lower melting points for the unsaturated polymers (46−55 °C). All polymers are nontoxic as measured by an MTT assay for metabolic cell activity of a 3T3 mouse fibroblast cell line. Degradation studies showed no hydrolytic or enzymatic degradability of the polymers, which was ascribed to the high crystallinity and hydrophobicity of the materials. The unsaturated polymers were cross-linked in the melt, yielding fully amorphous transparent materials with a gel content of 97%.
ISSN:1525-7797
1526-4602
DOI:10.1021/bm800898c