Characterization of the Adhesive Plaque of the Barnacle Balanus amphitrite: Amyloid-Like Nanofibrils Are a Major Component

The nanoscale morphology and protein secondary structure of barnacle adhesive plaques were characterized using atomic force microscopy (AFM), far-UV circular dichroism (CD) spectroscopy, transmission Fourier transform infrared (FTIR) spectroscopy, and Thioflavin T (ThT) staining. Both primary cement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2010-05, Vol.26 (9), p.6549-6556
Hauptverfasser: Barlow, Daniel E, Dickinson, Gary H, Orihuela, Beatriz, Kulp, John L, Rittschof, Daniel, Wahl, Kathryn J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nanoscale morphology and protein secondary structure of barnacle adhesive plaques were characterized using atomic force microscopy (AFM), far-UV circular dichroism (CD) spectroscopy, transmission Fourier transform infrared (FTIR) spectroscopy, and Thioflavin T (ThT) staining. Both primary cement (original cement laid down by the barnacle) and secondary cement (cement used for reattachment) from the barnacle Balanus amphitrite (= Amphibalanus amphitrite) were analyzed. Results showed that both cements consisted largely of nanofibrillar matrices having similar composition. Of particular significance, the combined results indicate that the nanofibrillar structures are consistent with amyloid, with globular protein components also identified in the cement. Potential properties, functions, and formation mechanisms of the amyloid-like nanofibrils within the adhesive interface are discussed. Our results highlight an emerging trend in structural biology showing that amyloid, historically associated with disease, also has functional roles.
ISSN:0743-7463
1520-5827
DOI:10.1021/la9041309