Studies on Protein−Liposome Coupling Using Novel Thiol-Reactive Coupling Lipids:  Influence of Spacer Length and Polarity

To optimize the preparation of immunoliposomes, we investigated the coupling of thiolated IgG and BSA to liposomes using a novel group of coupling lipids. All lipids consist of cholesterol as membrane anchor and a thiol-reactive maleimide headgroup, linked by a spacer that differs in length and pola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioconjugate chemistry 2001-07, Vol.12 (4), p.470-475
Hauptverfasser: Fleiner, Michael, Benzinger, Petra, Fichert, Thomas, Massing, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To optimize the preparation of immunoliposomes, we investigated the coupling of thiolated IgG and BSA to liposomes using a novel group of coupling lipids. All lipids consist of cholesterol as membrane anchor and a thiol-reactive maleimide headgroup, linked by a spacer that differs in length and polarity (ethylene glycol, tetraethylene glycol, PEG 400, PEG 1000, dodecyl). In addition, lipids differ in the electrophilicity of the maleimide group (p- or m-maleimidobenzoic ester). In the case of BSA, coupling efficiency strongly depended on the electrophilicity of the maleimide group as well as on the spacer polarity:  The less electrophilic meta constitution seems to be an advantage over the p-maleimidobenzoic ester, resulting in higher coupling efficiency. Polar spacers (tetraethylene glycol, 46%) achieved a higher coupling efficiency than a nonpolar spacer with approximately the same length (dodecyl, 15%).When liposomes containing coupling lipids with the spacers tetraethylene glycol, PEG 400, and PEG 1000 were linked to BSA, coupling efficiencies were in a medium range and similar (41−46%) but were lower for the short ethylene glycol spacer (30%). In contrast, for IgG coupling efficiencies correlated with increasing spacer length. Best results were obtained using coupling lipids with a long polar spacer (PEG 1000) (65%), whereas a coupling lipid bearing a short spacer (ethylene glycol) resulted in a low coupling efficiency of 12%.
ISSN:1043-1802
1520-4812
DOI:10.1021/bc000101m