Biochar as a Fuel: 1. Properties and Grindability of Biochars Produced from the Pyrolysis of Mallee Wood under Slow-Heating Conditions

Biomass as a fuel suffers from its bulky, fibrous, high moisture content and low-energy-density nature, leading to key issues including high transport cost and poor biomass grindability. This study investigates the possibility to pretreat biomass to produce biochar as a solid biofuel to address thes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2009-08, Vol.23 (8), p.4174-4181
Hauptverfasser: Abdullah, Hanisom, Wu, Hongwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biomass as a fuel suffers from its bulky, fibrous, high moisture content and low-energy-density nature, leading to key issues including high transport cost and poor biomass grindability. This study investigates the possibility to pretreat biomass to produce biochar as a solid biofuel to address these issues. Biochars were produced from the pyrolysis of centimeter-sized particles of Western Australia (WA) mallee wood in a fixed-bed reactor at 300 to 500 °C and a heating rate of 10 °C/min. The data show that, at pyrolysis temperatures ≥320 °C, biochar as a fuel has similar fuel H/C and O/C ratios compared to Collie coal that is the only coal being mined in WA. Converting biomass to biochar leads to a substantial increase in fuel mass energy density from ∼10 GJ/ton of green biomass to ∼28 GJ/ton of biochars prepared from pyrolysis at 320 °C, in comparison to 26 GJ/ton for Collie coal. However, there is little improvement in fuel volumetric energy density, which is around 7−9 GJ/m3 in comparison to 17 GJ/m3 of Collie coal. Biochars are still bulky and grinding is required for volumetric energy densification. Biochar grindability experiments show that the fuel grindability increases drastically even at pyrolysis temperature as low as 300 °C. Further increase in pyrolysis temperature to 500 °C leads to only a small increase in biochar grindability. Under the grinding conditions, a significant size reduction (34−66% cumulative volumetric size below 75 μm) for biochars can be achieved after 4 minutes grinding (in comparison to only 19% for biomass after 15 minutes grinding), leading to a significant increase in volumetric energy density (e.g., from ∼8 to 19 GJ/m3 for biochar prepared from pyrolysis at 400 °C). Whereas grinding raw biomass typically results in large and fibrous particles, grinding biochars produces short and round particles. The results in this article indicate that biochar has desired fuel properties and potentially a good solution to address the key issues including high transport cost and poor grindability associated with the direct use of biomass as a fuel.
ISSN:0887-0624
1520-5029
DOI:10.1021/ef900494t