Targeting and Photodynamic Killing of a Microbial Pathogen Using Protein Cage Architectures Functionalized with a Photosensitizer
The selectivity of antimicrobial photodynamic therapy (PDT) can be enhanced by coupling the photosensitizer (PS) to a targeting ligand. Nanoplatforms provide a medium for designing delivery vehicles that incorporate both functional attributes. We report here the photodynamic inactivation of a pathog...
Gespeichert in:
Veröffentlicht in: | Langmuir 2007-11, Vol.23 (24), p.12280-12286 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The selectivity of antimicrobial photodynamic therapy (PDT) can be enhanced by coupling the photosensitizer (PS) to a targeting ligand. Nanoplatforms provide a medium for designing delivery vehicles that incorporate both functional attributes. We report here the photodynamic inactivation of a pathogenic bacterium, Staphylococcus aureus, using targeted nanoplatforms conjugated to a photosensitizer (PS). Both electrostatic and complementary biological interactions were used to mediate targeting. Genetic constructs of a protein cage architecture allowed site-specific chemical functionalization with the PS and facilitated dual functionalization with the PS and the targeting ligand. These results demonstrate that protein cage architectures can serve as versatile templates for engineering nanoplatforms for targeted antimicrobial PDT. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la7021424 |