Surfactant Vesicles for High-Efficiency Capture and Separation of Charged Organic Solutes
We demonstrate the unique ability of catanionic vesicles, formed by mixing single-tailed cationic and anionic surfactants, to capture ionic solutes with remarkable efficiency. In an initial study (Wang, X.; Danoff, E. J.; Sinkov, N. A.; Lee, J.-H.; Raghavan, S. R.; English, D. S. Langmuir 2006, 22,...
Gespeichert in:
Veröffentlicht in: | Langmuir 2007-08, Vol.23 (17), p.8965-8971 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We demonstrate the unique ability of catanionic vesicles, formed by mixing single-tailed cationic and anionic surfactants, to capture ionic solutes with remarkable efficiency. In an initial study (Wang, X.; Danoff, E. J.; Sinkov, N. A.; Lee, J.-H.; Raghavan, S. R.; English, D. S. Langmuir 2006, 22, 6461) with vesicles formed from cetyl trimethylammonium tosylate (CTAT) and sodium dodecylbenzenesulfonate (SDBS), we showed that CTAT-rich (cationic) vesicles could capture the anionic solute carboxyfluorescein with high efficiency (22%) and that the solute was retained by the vesicles for very long times (t 1/2 = 84 days). Here we expand on these findings by investigating the interactions of both anionic and cationic solutes, including the chemotherapeutic agent doxorubicin, with both CTAT-rich and SDBS-rich vesicles. The ability of these vesicles to capture and hold dyes is extremely efficient (>20%) when the excess charge of the vesicle bilayer is opposite that of the solute (i.e., for anionic solutes in CTAT-rich vesicles and for cationic solutes in SDBS-rich vesicles). This charge-dependent effect is strong enough to enable the use of vesicles to selectively capture and separate an oppositely charged solute from a mixture of solutes. Our results suggest that catanionic surfactant vesicles could be useful for a variety of separation and drug delivery applications because of their unique properties and long-term stability. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la070215n |