On the Kinetics of Apatite Growth on Substrates under Physiological Conditions
Derived from reaction kinetics, a simple but useful method, based on “apatite forming capacity” or AFC of solutions mimicking blood plasma, is proposed to decipher the rate of calcium phosphate mineralization. Apatite growth rate constants were calculated using this method for a model composite surf...
Gespeichert in:
Veröffentlicht in: | Langmuir 2006-01, Vol.22 (1), p.269-276 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Derived from reaction kinetics, a simple but useful method, based on “apatite forming capacity” or AFC of solutions mimicking blood plasma, is proposed to decipher the rate of calcium phosphate mineralization. Apatite growth rate constants were calculated using this method for a model composite surface varying the volume fraction of synthetic hydroxyapatite (HA) in a polymer matrix. Previously reported data for mineralized surfaces on Ta, Ti, and its alloys are also analyzed similarly and compared. Utilizing the growth rate constant, the bioactivity of the materials was indexed in vitro. Complementarily, semiempirical quantum mechanical calculation (ZINDO method) showed that the interaction of cations with TRIS-hydroxymethyl aminomethane molecules in the solution is stronger than that with the polymer substrate considered, but weaker than hydrated Ti and TiO2 surfaces. This analysis then quantifies for example the extent of polymer inertness and the “bioactivity” of alkali treated Ti. The growth rate constants for the model materials prepared in this work are explained on the basis of localized dissolution of HA, the amount of which simply increases with increasing volume fraction of HA in the composite. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la0522348 |