A New Concept of Desulfurization: The Electrochemically Driven and Green Conversion of SO2 to NaHSO4 in Aqueous Solution
A new concept of desulfurization was developed by designing a series of electrochemical reactions to drive an SO2 absorption-and-conversion process in aqueous solution, hence the SO2 in gas was eventually converted to a valuable chemical of NaHSO4. A model experiment of chemically substantiating thi...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2008-11, Vol.42 (22), p.8585-8590 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new concept of desulfurization was developed by designing a series of electrochemical reactions to drive an SO2 absorption-and-conversion process in aqueous solution, hence the SO2 in gas was eventually converted to a valuable chemical of NaHSO4. A model experiment of chemically substantiating this concept includes two steps: (I) absorption of SO2 gas by aqueous solution and oxidation of the absorbed SO2 to SO4 2− by air and (II) transformation of the SO4 2− to NaHSO4. The experiment demonstrated that in Step I, the cathodic reduction of O2 from ambient air scavenged the H+ released due to the SO2 absorption and its further oxidation, which thereby were accelerated. Meanwhile H2O2 as a cathodic product further enhanced the SO2 oxidation. In Step II, the anodic oxidation of H2O supplied H+ and allowed the NaHSO4 formation through balances of electrons and mass. Thereafter, a pH range of 5.0−6.0 for the SO2 oxidation was optimized, and an electrochemically driven process for the SO2 conversion to NaHSO4 was proposed. Sustainability evaluation indicated that this concept complies with the principles of green chemistry and potentially enables the SO2 conversion from flue gas to NaHSO4 as a value-added process. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es8015342 |