Europium Adsorption on Multiwall Carbon Nanotube/Iron Oxide Magnetic Composite in the Presence of Polyacrylic Acid

This paper examines the interaction between Eu(III) and a multiwall carbon nanotube (MWCNT)/iron oxide magnetic composite in the absence and presence of poly(acrylic acid) (PAA). PAA was used as a surrogate for natural organic matter. The effects of pH, initial Eu(III) concentration, and PAA on Eu(I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2009-04, Vol.43 (7), p.2362-2367
Hauptverfasser: Chen, C. L, Wang, X. K, Nagatsu, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper examines the interaction between Eu(III) and a multiwall carbon nanotube (MWCNT)/iron oxide magnetic composite in the absence and presence of poly(acrylic acid) (PAA). PAA was used as a surrogate for natural organic matter. The effects of pH, initial Eu(III) concentration, and PAA on Eu(III) adsorption on the magnetic composite were investigated using a batch technique. Percentage adsorption of Eu(III) on the magnetic composite increased with increasing pH and decreased with initial Eu(III) concentration. PAA adsorption on the magnetic composite decreased with increasing pH and was not obviously affected by the presence of Eu(III). The presence of PAA resulted in strong enhancement of Eu(III) adsorption below pH 4.5. However, above pH 5, an increase in soluble Eu−PAA complexes resulted in a decrease in Eu(III) adsorption on the magnetic composite. With increasing PAA concentrations, maximum adsorption of Eu(III) decreased and the adsorption “edge” shifted toward a lower pH range. Obvious difference of Eu(III)/PAA addition sequences on Eu(III) adsorption was observed above pH 4. The Freundlich model fitted Eu(III) adsorption isotherms very well in the absence and presence of PAA. These results are important for estimating and optimizing the removal of organic and inorganic pollutants by the magnetic composite.
ISSN:0013-936X
1520-5851
DOI:10.1021/es803018a