“Plastic” Solar Cells: Self-Assembly of Bulk Heterojunction Nanomaterials by Spontaneous Phase Separation

As the global demand for low-cost renewable energy sources intensifies, interest in new routes for converting solar energy to electricity is rapidly increasing. Although photovoltaic cells have been commercially available for more than 50 years, only 0.1% of the total electricity generated in the Un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Accounts of chemical research 2009-11, Vol.42 (11), p.1700-1708
Hauptverfasser: Peet, Jeffrey, Heeger, Alan J, Bazan, Guillermo C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1708
container_issue 11
container_start_page 1700
container_title Accounts of chemical research
container_volume 42
creator Peet, Jeffrey
Heeger, Alan J
Bazan, Guillermo C
description As the global demand for low-cost renewable energy sources intensifies, interest in new routes for converting solar energy to electricity is rapidly increasing. Although photovoltaic cells have been commercially available for more than 50 years, only 0.1% of the total electricity generated in the United States comes directly from sunlight. The earliest commercial solar technology remains the basis for the most prevalent devices in current use, namely, highly-ordered crystalline, inorganic solar cells, commonly referred to as silicon cells. Another class of solar cells that has recently inspired significant academic and industrial excitement is the bulk heterojunction (BHJ) “plastic” solar cell. Research by a rapidly growing community of scientists across the globe is generating a steady stream of new insights into the fundamental physics, the materials design and synthesis, the film processing and morphology, and the device science and architecture of BHJ technology. Future progress in the fabrication of high-performance BHJ cells will depend on our ability to combine aspects of synthetic and physical chemistry, condensed matter physics, and materials science. In this Account, we use a combination of characterization tools to tie together recent advances in BHJ morphology characterization, device photophysics, and thin-film solution processing, illustrating how to identify the limiting factors in solar cell performance. We also highlight how new processing methods, which control both the BHJ phase separation and the internal order of the components, can be implemented to increase the power conversion efficiency (PCE). The failure of many innovative materials to achieve high performance in BHJ solar cell devices has been blamed on “poor morphology” without significant characterization of either the structure of the phase-separated morphology or the nature of the charge carrier recombination. We demonstrate how properly controlling the “nanomorphology”, which is critically dependent on minute experimental details at every step, from synthesis to device construction, provides a clear path to >10% PCE BHJ cells, which can be fabricated at a fraction of the cost of conventional solar cells.
doi_str_mv 10.1021/ar900065j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754540551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754540551</sourcerecordid><originalsourceid>FETCH-LOGICAL-a411t-c046969175c22df8d26014d6396166479da26b7f66ee995e8edd314fd00ff19e3</originalsourceid><addsrcrecordid>eNp90b1OwzAQB3ALgaB8DLwA8gKIIeBz7UvMBhVfEgKkwhy5iS1SkrjYydCNB4GX40kwagULYrJ9-ukv3x0hu8COgXE40V4xxlBOV8gAJGeJyFS2SgaxCPEu-AbZDGEan1xguk42QElUKbABaT7f3h9qHbqq-Hz7oGNXa09Hpq7DKR2b2iZnIZhmUs-ps_S8r1_otemMd9O-LbrKtfROt67RsVTpOtDJnI5nru10a1wf6MOzDibmzLTX33qbrNnIzM7y3CJPlxePo-vk9v7qZnR2m2gB0CUFE6hQQSoLzkublRwZiBKHCgFRpKrUHCepRTRGKWkyU5ZDELZkzFpQZrhFDhe5M-9eexO6vKlCEbta_CtPpZCCSQlRHvwrEXGIGfAIjxaw8C4Eb2w-81Wj_TwHln9vIf_ZQrR7y9B-0pjyVy7HHsH-Augi5FPX-zZO44-gLzgKkA8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66636812</pqid></control><display><type>article</type><title>“Plastic” Solar Cells: Self-Assembly of Bulk Heterojunction Nanomaterials by Spontaneous Phase Separation</title><source>ACS Publications</source><creator>Peet, Jeffrey ; Heeger, Alan J ; Bazan, Guillermo C</creator><creatorcontrib>Peet, Jeffrey ; Heeger, Alan J ; Bazan, Guillermo C</creatorcontrib><description>As the global demand for low-cost renewable energy sources intensifies, interest in new routes for converting solar energy to electricity is rapidly increasing. Although photovoltaic cells have been commercially available for more than 50 years, only 0.1% of the total electricity generated in the United States comes directly from sunlight. The earliest commercial solar technology remains the basis for the most prevalent devices in current use, namely, highly-ordered crystalline, inorganic solar cells, commonly referred to as silicon cells. Another class of solar cells that has recently inspired significant academic and industrial excitement is the bulk heterojunction (BHJ) “plastic” solar cell. Research by a rapidly growing community of scientists across the globe is generating a steady stream of new insights into the fundamental physics, the materials design and synthesis, the film processing and morphology, and the device science and architecture of BHJ technology. Future progress in the fabrication of high-performance BHJ cells will depend on our ability to combine aspects of synthetic and physical chemistry, condensed matter physics, and materials science. In this Account, we use a combination of characterization tools to tie together recent advances in BHJ morphology characterization, device photophysics, and thin-film solution processing, illustrating how to identify the limiting factors in solar cell performance. We also highlight how new processing methods, which control both the BHJ phase separation and the internal order of the components, can be implemented to increase the power conversion efficiency (PCE). The failure of many innovative materials to achieve high performance in BHJ solar cell devices has been blamed on “poor morphology” without significant characterization of either the structure of the phase-separated morphology or the nature of the charge carrier recombination. We demonstrate how properly controlling the “nanomorphology”, which is critically dependent on minute experimental details at every step, from synthesis to device construction, provides a clear path to &gt;10% PCE BHJ cells, which can be fabricated at a fraction of the cost of conventional solar cells.</description><identifier>ISSN: 0001-4842</identifier><identifier>EISSN: 1520-4898</identifier><identifier>DOI: 10.1021/ar900065j</identifier><identifier>PMID: 19569710</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Accounts of chemical research, 2009-11, Vol.42 (11), p.1700-1708</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a411t-c046969175c22df8d26014d6396166479da26b7f66ee995e8edd314fd00ff19e3</citedby><cites>FETCH-LOGICAL-a411t-c046969175c22df8d26014d6396166479da26b7f66ee995e8edd314fd00ff19e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ar900065j$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ar900065j$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19569710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peet, Jeffrey</creatorcontrib><creatorcontrib>Heeger, Alan J</creatorcontrib><creatorcontrib>Bazan, Guillermo C</creatorcontrib><title>“Plastic” Solar Cells: Self-Assembly of Bulk Heterojunction Nanomaterials by Spontaneous Phase Separation</title><title>Accounts of chemical research</title><addtitle>Acc. Chem. Res</addtitle><description>As the global demand for low-cost renewable energy sources intensifies, interest in new routes for converting solar energy to electricity is rapidly increasing. Although photovoltaic cells have been commercially available for more than 50 years, only 0.1% of the total electricity generated in the United States comes directly from sunlight. The earliest commercial solar technology remains the basis for the most prevalent devices in current use, namely, highly-ordered crystalline, inorganic solar cells, commonly referred to as silicon cells. Another class of solar cells that has recently inspired significant academic and industrial excitement is the bulk heterojunction (BHJ) “plastic” solar cell. Research by a rapidly growing community of scientists across the globe is generating a steady stream of new insights into the fundamental physics, the materials design and synthesis, the film processing and morphology, and the device science and architecture of BHJ technology. Future progress in the fabrication of high-performance BHJ cells will depend on our ability to combine aspects of synthetic and physical chemistry, condensed matter physics, and materials science. In this Account, we use a combination of characterization tools to tie together recent advances in BHJ morphology characterization, device photophysics, and thin-film solution processing, illustrating how to identify the limiting factors in solar cell performance. We also highlight how new processing methods, which control both the BHJ phase separation and the internal order of the components, can be implemented to increase the power conversion efficiency (PCE). The failure of many innovative materials to achieve high performance in BHJ solar cell devices has been blamed on “poor morphology” without significant characterization of either the structure of the phase-separated morphology or the nature of the charge carrier recombination. We demonstrate how properly controlling the “nanomorphology”, which is critically dependent on minute experimental details at every step, from synthesis to device construction, provides a clear path to &gt;10% PCE BHJ cells, which can be fabricated at a fraction of the cost of conventional solar cells.</description><issn>0001-4842</issn><issn>1520-4898</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90b1OwzAQB3ALgaB8DLwA8gKIIeBz7UvMBhVfEgKkwhy5iS1SkrjYydCNB4GX40kwagULYrJ9-ukv3x0hu8COgXE40V4xxlBOV8gAJGeJyFS2SgaxCPEu-AbZDGEan1xguk42QElUKbABaT7f3h9qHbqq-Hz7oGNXa09Hpq7DKR2b2iZnIZhmUs-ps_S8r1_otemMd9O-LbrKtfROt67RsVTpOtDJnI5nru10a1wf6MOzDibmzLTX33qbrNnIzM7y3CJPlxePo-vk9v7qZnR2m2gB0CUFE6hQQSoLzkublRwZiBKHCgFRpKrUHCepRTRGKWkyU5ZDELZkzFpQZrhFDhe5M-9eexO6vKlCEbta_CtPpZCCSQlRHvwrEXGIGfAIjxaw8C4Eb2w-81Wj_TwHln9vIf_ZQrR7y9B-0pjyVy7HHsH-Augi5FPX-zZO44-gLzgKkA8</recordid><startdate>20091117</startdate><enddate>20091117</enddate><creator>Peet, Jeffrey</creator><creator>Heeger, Alan J</creator><creator>Bazan, Guillermo C</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20091117</creationdate><title>“Plastic” Solar Cells: Self-Assembly of Bulk Heterojunction Nanomaterials by Spontaneous Phase Separation</title><author>Peet, Jeffrey ; Heeger, Alan J ; Bazan, Guillermo C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a411t-c046969175c22df8d26014d6396166479da26b7f66ee995e8edd314fd00ff19e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peet, Jeffrey</creatorcontrib><creatorcontrib>Heeger, Alan J</creatorcontrib><creatorcontrib>Bazan, Guillermo C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Accounts of chemical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peet, Jeffrey</au><au>Heeger, Alan J</au><au>Bazan, Guillermo C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>“Plastic” Solar Cells: Self-Assembly of Bulk Heterojunction Nanomaterials by Spontaneous Phase Separation</atitle><jtitle>Accounts of chemical research</jtitle><addtitle>Acc. Chem. Res</addtitle><date>2009-11-17</date><risdate>2009</risdate><volume>42</volume><issue>11</issue><spage>1700</spage><epage>1708</epage><pages>1700-1708</pages><issn>0001-4842</issn><eissn>1520-4898</eissn><abstract>As the global demand for low-cost renewable energy sources intensifies, interest in new routes for converting solar energy to electricity is rapidly increasing. Although photovoltaic cells have been commercially available for more than 50 years, only 0.1% of the total electricity generated in the United States comes directly from sunlight. The earliest commercial solar technology remains the basis for the most prevalent devices in current use, namely, highly-ordered crystalline, inorganic solar cells, commonly referred to as silicon cells. Another class of solar cells that has recently inspired significant academic and industrial excitement is the bulk heterojunction (BHJ) “plastic” solar cell. Research by a rapidly growing community of scientists across the globe is generating a steady stream of new insights into the fundamental physics, the materials design and synthesis, the film processing and morphology, and the device science and architecture of BHJ technology. Future progress in the fabrication of high-performance BHJ cells will depend on our ability to combine aspects of synthetic and physical chemistry, condensed matter physics, and materials science. In this Account, we use a combination of characterization tools to tie together recent advances in BHJ morphology characterization, device photophysics, and thin-film solution processing, illustrating how to identify the limiting factors in solar cell performance. We also highlight how new processing methods, which control both the BHJ phase separation and the internal order of the components, can be implemented to increase the power conversion efficiency (PCE). The failure of many innovative materials to achieve high performance in BHJ solar cell devices has been blamed on “poor morphology” without significant characterization of either the structure of the phase-separated morphology or the nature of the charge carrier recombination. We demonstrate how properly controlling the “nanomorphology”, which is critically dependent on minute experimental details at every step, from synthesis to device construction, provides a clear path to &gt;10% PCE BHJ cells, which can be fabricated at a fraction of the cost of conventional solar cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>19569710</pmid><doi>10.1021/ar900065j</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4842
ispartof Accounts of chemical research, 2009-11, Vol.42 (11), p.1700-1708
issn 0001-4842
1520-4898
language eng
recordid cdi_proquest_miscellaneous_754540551
source ACS Publications
title “Plastic” Solar Cells: Self-Assembly of Bulk Heterojunction Nanomaterials by Spontaneous Phase Separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A06%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%80%9CPlastic%E2%80%9D%20Solar%20Cells:%20Self-Assembly%20of%20Bulk%20Heterojunction%20Nanomaterials%20by%20Spontaneous%20Phase%20Separation&rft.jtitle=Accounts%20of%20chemical%20research&rft.au=Peet,%20Jeffrey&rft.date=2009-11-17&rft.volume=42&rft.issue=11&rft.spage=1700&rft.epage=1708&rft.pages=1700-1708&rft.issn=0001-4842&rft.eissn=1520-4898&rft_id=info:doi/10.1021/ar900065j&rft_dat=%3Cproquest_cross%3E754540551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66636812&rft_id=info:pmid/19569710&rfr_iscdi=true